50 research outputs found

    Detection of diffuse interstellar bands in M31

    Full text link
    We investigate the diffuse interstellar band (DIB) spectrum in the interstellar medium of M31. The DEIMOS spectrograph of the W. M. Keck observatory was used to make optical spectroscopic observations of two supergiant stars, MAG 63885 and MAG 70817, in the vicinity of the OB78 association in M31 where the metallicity is approximately equal to solar. The 5780, 5797, 6203, 6283 and 6613 DIBs are detected in both sightlines at velocities matching the M31 interstellar Na I absorption. The spectra are classified and interstellar reddenings are derived for both stars. Diffuse interstellar band (DIB) equivalent widths and radial velocities are presented. The spectrum of DIBs observed in M31 towards MAG 63885 is found to be similar to that observed in the Milky Way. Towards MAG 70817 the DIB equivalent widths per unit reddening are about three times the Galactic average. Compared to observations elsewhere in the Universe, relative to reddening the M31 ISM in the vicinity of OB78 is apparently a highly favourable environment for the formation of DIB carriers

    Linear/circular spectropolarimetry of diffuse interstellar bands

    Full text link
    Context. The identification of the carriers of diffuse interstellar bands (DIBs) remains one of the long-standing mysteries in astronomy. The detection of a polarisation signal in a DIB profile can be used to distinguish between a dust or gas-phase carrier. The polarisation profile can give additional information on the grain or molecular properties of the absorber. In order to detect and measure the linear and circular polarisation of the DIBs we observed reddened lines of sight showing continuum polarisation. For this study we selected two stars HD 197770 and HD 194279. We used high-resolution (R~64.000) spectropolarimetry in the wavelength range from 3700 to 10480 Angstrom with the ESPaDOnS echelle spectrograph mounted at the CFHT. Results. High S/N and high resolution Stokes V (circular), Q and U (linear) spectra were obtained. We constrained upper limits by a factor of 10 for previously observed DIBs. Furthermore, we analysed ~30 additional DIBs for which no spectropolarimetry data has been obtained before. This included the 9577 A DIB and the 8621 A DIB. Conclusions. The lack of polarisation in 45 DIB profiles suggests that none of the absorption lines is induced by a grain-type carrier. The strict upper limits, less than ~0.01%, derived for the observed lines-of-sight imply that if DIBs are due to gas-phase molecules these carriers have polarisation efficiencies which are at least 6 times, and up to 300 times, smaller than those predicted for grain-related carriers.Comment: 6 pages + 13 pages online material, submitted to A&

    Improved Production Process for Native Outer Membrane Vesicle Vaccine against Neisseria meningitidis

    Get PDF
    An improved detergent-free process has been developed to produce vaccine based on native outer membrane vesicles (NOMV) against Neisseria meningitidis serogroup B. Performance was evaluated with the NonaMen vaccine concept, which provides broad coverage based on nine distinct PorA antigens. Scalable aseptic equipment was implemented, replacing undesirable steps like ultracentrifugation, inactivation with phenol, and the use of preservatives. The resulting process is more consistent and gives a higher yield than published reference processes, enabling NOMV production at commercial scale. Product quality met preliminary specifications for 9 consecutive batches, and an ongoing study confirmed real-time stability up to 12 months after production. As the NOMV had low endotoxic activity and induced high bactericidal titres in mice, they are expected to be safe and effective in humans. The production process is not limited to NonaMen and may be applicable for other N. meningitidis serogroups and other gram-negative pathogens. The current results therefore facilitate the late-stage development and clinical evaluation of NOMV vaccines

    A search for diffuse bands in the circumstellar envelopes of post-AGB stars

    Full text link
    In this work we present the results of a systematic search for diffuse bands (DBs, hereafter) in the circumstellar envelopes of a carefully selected sample of post-AGB stars. We concentrated on the analysis of 9 of the DBs most commonly found in the interstellar medium. The strength of these features is determined using high resolution optical spectroscopy and the results obtained are compared with literature data on field stars affected only by interstellar reddening. Based on the weak features observed in the subsample of post-AGB stars dominated by circumstellar reddening we conclude that the carrier(s) of these DBs must not be present in the circumstellar environment of these sources, or at least not under the excitation conditions in which DBs are formed. The conclusion is applicable to all the post-AGB stars studied, irrespective of the dominant chemistry or the spectral type of the star considered. A detailed radial velocity analysis of the features observed in individual sources confirms this result, as the Doppler shifts measured are found to be consistent with an interstellar origin.Comment: Accepted for A&

    A coincidence between a hydrocarbon plasma absorption spectrum and the lambda 5450 DIB

    Full text link
    The aim of this work is to link the broad lambda 5450 diffuse interstellar band (DIB) to a laboratory spectrum recorded through an expanding acetylene plasma. Cavity ring-down direct absorption spectra and astronomical observations of HD 183143 with the HERMES spectrograph on the Mercator Telescope in La Palma and the McKellar spectrograph on the DAO 1.2 m Telescope are compared. In the 543-547 nm region a broad band is measured with a band maximum at 545 nm and FWHM of 1.03(0.1) nm coinciding with a well-known diffuse interstellar band at lambda 5450 with FWHM of 0.953 nm. A coincidence is found between the laboratory and the two independent observational studies obtained at higher spectral resolution. This result is important, as a match between a laboratory spectrum and a - potentially lifetime broadened - DIB is found. A series of additional experiments has been performed in order to unambiguously identify the laboratory carrier of this band. This has not been possible. The laboratory results, however, restrict the carrier to a molecular transient, consisting of carbon and hydrogen.Comment: 6 pages, 3 figures, accepted for publication in A&
    corecore