118 research outputs found

    Effects of Ketamine and Ketamine Metabolites on Evoked Striatal Dopamine Release, Dopamine Receptors, and Monoamine Transporters

    Get PDF
    Following administration at subanesthetic doses, (R,S)-ketamine (ketamine) induces rapid and robust relief from symptoms of depression in treatment-refractory depressed patients. Previous studies suggest that ketamine’s antidepressant properties involve enhancement of dopamine (DA) neurotransmission. Ketamine is rapidly metabolized to (2S,6S)- and (2R,6R)-hydroxynorketamine (HNK), which have antidepressant actions independent of N-methyl-d-aspartate glutamate receptor inhibition. These antidepressant actions of (2S,6S;2R,6R)-HNK, or other metabolites, as well as ketamine’s side effects, including abuse potential, may be related to direct effects on components of the dopaminergic (DAergic) system. Here, brain and blood distribution/clearance and pharmacodynamic analyses at DA receptors (D1–D5) and the DA, norepinephrine, and serotonin transporters were assessed for ketamine and its major metabolites (norketamine, dehydronorketamine, and HNKs). Additionally, we measured electrically evoked mesolimbic DA release and decay using fast-scan cyclic voltammetry following acute administration of subanesthetic doses of ketamine (2, 10, and 50 mg/kg, i.p.). Following ketamine injection, ketamine, norketamine, and multiple hydroxynorketamines were detected in the plasma and brain of mice. Dehydronorketamine was detectable in plasma, but concentrations were below detectable limits in the brain. Ketamine did not alter the magnitude or kinetics of evoked DA release in the nucleus accumbens in anesthetized mice. Neither ketamine’s enantiomers nor its metabolites had affinity for DA receptors or the DA, noradrenaline, and serotonin transporters (up to 10 ÎŒM). These results suggest that neither the side effects nor antidepressant actions of ketamine or ketamine metabolites are associated with direct effects on mesolimbic DAergic neurotransmission. Previously observed in vivo changes in DAergic neurotransmission following ketamine administration are likely indirect

    Social and Hydrological Responses to Extreme Precipitations: An Interdisciplinary Strategy for Postflood Investigation

    Get PDF
    International audienceThis paper describes and illustrates a methodology to conduct postflood investigations based on interdisciplinary collaboration between social and physical scientists. The method, designed to explore the link between crisis behavioral response and hydrometeorological dynamics, aims at understanding the spatial and temporal capacities and constraints on human behaviors in fast-evolving hydrometeorological conditions. It builds on methods coming from both geosciences and transportations studies to complement existing post-flood field investigation methodology used by hydrometeorologists. The authors propose an interview framework, structured around a chronological guideline to allow people who experienced the flood firsthand to tell the stories of the circumstances in which their activities were affected during the flash flood. This paper applies the data collection method to the case of the 15 June 2010 flash flood event that killed 26 people in the Draguignan area (Var, France). As a first step, based on the collected narratives, an abductive approach allowed the identification of the possible factors influencing individual responses to flash floods. As a second step, behavioral responses were classified into categories of activities based on the respondents' narratives. Then, aspatial and temporal analysis of the sequences made of the categories of action to contextualize the set of coping responses with respect to local hydrometeorological conditions is proposed. During this event, the respondents mostly follow the pace of change in their local environmental conditions as the flash flood occurs, official flood anticipation being rather limited and based on a large-scale weather watch. Therefore, contextual factors appear as strongly influencing the individual's ability to cope with the event in such a situation

    NMDAR inhibition-independent antidepressant actions of ketamine metabolites

    Get PDF
    Major depressive disorder afflicts ~16 percent of the world population at some point in their lives. Despite a number of available monoaminergic-based antidepressants, most patients require many weeks, if not months, to respond to these treatments, and many patients never attain sustained remission of their symptoms. The non-competitive glutamatergic N-methyl-D-aspartate receptor (NMDAR) antagonist, (R,S)-ketamine (ketamine), exerts rapid and sustained antidepressant effects following a single dose in depressed patients. Here we show that the metabolism of ketamine to (2S,6S;2R,6R)-hydroxynorketamine (HNK) is essential for its antidepressant effects, and that the (2R,6R)-HNK enantiomer exerts behavioural, electroencephalographic, electrophysiological and cellular antidepressant actions in vivo. Notably, we demonstrate that these antidepressant actions are NMDAR inhibition-independent but they involve early and sustained α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor activation. We also establish that (2R,6R)-HNK lacks ketamine-related side-effects. Our results indicate a novel mechanism underlying ketamine’s unique antidepressant properties, which involves the required activity of a distinct metabolite and is independent of NMDAR inhibition. These findings have relevance for the development of next generation, rapid-acting antidepressants

    Ketamine for Refractory Chronic Migraine: An Observational Pilot Study and Metabolite Analysis.

    Get PDF
    Patients with refractory chronic migraine have substantial disability and have failed many acute and preventive medications. When aggressive intravenous therapy is indicated, both lidocaine and (R,S)-ketamine infusions have been used successfully to provide relief. Retrospective studies have shown that both agents may be associated with short-term analgesia. In this prospective, observational pilot study of 6 patients, we compared the effects of lidocaine and (R,S)-ketamine infusions and performed metabolite analyses of (R,S)-ketamine to determine its metabolic profile in this population. One of (R,S)-ketamine\u27s metabolites, (2R,6R)-hydroxynorketamine, has been shown in animal studies to reduce pain, but human studies in patients undergoing continuous (R,S)-ketamine infusions for migraine are lacking. All 6 patients tolerated both infusions well with mild adverse effects. The baseline mean pain rating (0-10 numeric rating scale) decreased from 7.5 ± 2.2 to 4.7 ± 2.8 by end of lidocaine treatment ( P≀.05 role= presentation \u3eP≀.05 ) but increased to 7.0 ± 1.4 by the postdischarge visit at 4 weeks (P \u3e .05 vs baseline). The baseline mean pain rating prior to ketamine treatment was 7.4 ± 1.4, which decreased to 3.7 ± 2.3 by the end of the hospitalization ( P≀.05 role= presentation \u3eP≀.05 ) but increased to 7.2 ± 1.7 by the postdischarge visit at 6 weeks (P \u3e .05 vs baseline). For the primary outcome the change in pain from baseline to end of treatment was greater for ketamine than lidocaine (-3.7 vs -2.8; P≀.05 role= presentation \u3eP≀.05 ), but this has minimal clinical significance. Ketamine metabolite analysis revealed that (2R,6R)-hydroxynorketamine was the predominant metabolite during most of the infusion, consistent with previous studies

    Comprendre les comportements face Ă  un risque modĂ©rĂ© d’inondation. Etude de cas dans le pĂ©riurbain toulousain (Sud-Ouest de la France)

    Get PDF
    Les espaces urbanisĂ©s soumis Ă  des risques modĂ©rĂ©s d’inondation pour les vies humaines sont souvent peu considĂ©rĂ©s dans les Ă©tudes sur la vulnĂ©rabilitĂ© aux risques naturels en dĂ©pit des enjeux qu’ils reprĂ©sentent en termes de gestion de crise. Comment les riverains y font-ils face au danger et quelles sont leurs « bonnes raisons » d’agir? A partir de l’étude socio-gĂ©ographique de deux inondations rĂ©centes (2000 et 2003) dans la pĂ©riphĂ©rie toulousaine (Sud-Ouest de la France), nous montrons que les caractĂ©ristiques de l’alĂ©a dans les vallĂ©es Ă©tudiĂ©es influencent les reprĂ©sentations du risque et par consĂ©quent les motivations Ă  se protĂ©ger. Face au risque majeur, la vulnĂ©rabilitĂ© sociale se trouve ainsi augmentĂ©e. Pour amĂ©liorer la rĂ©silience des populations, il convient d’adapter la communication sur les risques: personnaliser l’information, amĂ©liorer la comprĂ©hension de l’évĂ©nement vĂ©cu et mobiliser de nouvelles formes de mĂ©diation entre gestionnaires et riverains

    A multi-component flood risk assessment in the Maresme coast (NW Mediterranean)

    Get PDF
    Coastal regions are the areas most threatened by natural hazards, with floods being the most frequent and significant threat in terms of their induced impacts, and therefore, any management scheme requires their evaluation. In coastal areas, flooding is a hazard associated with various processes acting at different scales: coastal storms, flash floods, and sea level rise (SLR). In order to address the problem as a whole, this study presents a methodology to undertake a preliminary integrated risk assessment that determines the magnitude of the different flood processes (flash flood, marine storm, SLR) and their associated consequences, taking into account their temporal and spatial scales. The risk is quantified using specific indicators to assess the magnitude of the hazard (for each component) and the consequences in a common scale. This allows for a robust comparison of the spatial risk distribution along the coast in order to identify both the areas at greatest risk and the risk components that have the greatest impact. This methodology is applied on the Maresme coast (NW Mediterranean, Spain), which can be considered representative of developed areas of the Spanish Mediterranean coast. The results obtained characterise this coastline as an area of relatively low overall risk, although some hot spots have been identified with high-risk values, with flash flooding being the principal risk process

    Deep Phenotyping of Post-infectious Myalgic Encephalomyelitis/Chronic Fatigue Syndrome

    Get PDF
    Post-infectious myalgic encephalomyelitis/chronic fatigue syndrome (PI-ME/CFS) is a disabling disorder, yet the clinical phenotype is poorly defined, the pathophysiology is unknown, and no disease-modifying treatments are available. We used rigorous criteria to recruit PI-ME/CFS participants with matched controls to conduct deep phenotyping. Among the many physical and cognitive complaints, one defining feature of PI-ME/CFS was an alteration of effort preference, rather than physical or central fatigue, due to dysfunction of integrative brain regions potentially associated with central catechol pathway dysregulation, with consequences on autonomic functioning and physical conditioning. Immune profiling suggested chronic antigenic stimulation with increase in naĂŻve and decrease in switched memory B-cells. Alterations in gene expression profiles of peripheral blood mononuclear cells and metabolic pathways were consistent with cellular phenotypic studies and demonstrated differences according to sex. Together these clinical abnormalities and biomarker differences provide unique insight into the underlying pathophysiology of PI-ME/CFS, which may guide future intervention
    • 

    corecore