115 research outputs found

    Single-nucleotide polymorphisms and association analysis of drought-resistance gene TaSnRK2.8 in common wheat

    Get PDF
    AbstractTaSnRK2.8, an SnRK2 (sucrose non-fermenting1-related protein kinase 2) member of wheat, confers enhanced multi-stress tolerances in carbohydrate metabolism. In the study, two types of genomic sequences of TaSnRK2.8 were detected in common wheat. Sequencing analysis showed that there was a variation-enriched region, designated TaSnRK2.8-A-C, covering the eighth intron, the ninth exon and the 3′-flanking region of TaSnRK2.8-A, and no divergence occurred in TaSnRK2.8-B. Single nucleotide polymorphisms in the TaSnRK2.8-A-C region were investigated in 165 wheat accessions. Three of 751 sequenced nucleotide sites were polymorphic. Nucleotide diversity (π) in the region was 0.00068. Sliding-window analysis demonstrated that the nucleotide diversity was highest in the 3′-flanking sequence. As predicted, the highly frequent SNP was significantly associated with seedling biomass under normal conditions, plant height, flag leaf width and water-soluble carbohydrate content under drought conditions. Analysis of variance of correlated traits between accessions with the A and G genotypes indicated that the A variant was the more favorable allele associated with significantly increased seedling biomass and water-soluble carbohydrates. Based on the SNP, we developed a functional marker of TaSnRK2.8-A-C, that could be utilized in wheat breeding programs aimed at improving seedling biomass and water-soluble carbohydrates, and consequently to enhance stress resistance in wheat

    Functional Analysis and Marker Development of TaCRT-D Gene in Common Wheat (Triticum aestivum L.)

    Get PDF
    Calreticulin (CRT), an endoplasmic reticulum (ER)-localized Ca2+-binding/buffering protein, is highly conserved and extensively expressed in animal and plant cells. To understand the function of CRTs in wheat (Triticum aestivum L.), particularly their roles in stress tolerance, we cloned the full-length genomic sequence of the TaCRT-D isoform from D genome of common hexaploid wheat, and characterized its function by transgenic Arabidopsis system. TaCRT-D exhibited different expression patterns in wheat seedling under different abiotic stresses. Transgenic Arabidopsis plants overexpressing ORF of TaCRT-D displayed more tolerance to drought, cold, salt, mannitol, and other abiotic stresses at both seed germination and seedling stages, compared with the wild-type controls. Furthermore, DNA polymorphism analysis and gene mapping were employed to develop the functional markers of this gene for marker-assistant selection in wheat breeding program. One SNP, S440 (T→C) was detected at the TaCRT-D locus by genotyping a wheat recombinant inbred line (RIL) population (114 lines) developed from Opata 85 × W7984. The TaCRT-D was then fine mapped between markers Xgwm645 and Xgwm664 on chromosome 3DL, corresponding to genetic distances of 3.5 and 4.4 cM, respectively, using the RIL population and Chinese Spring nulli-tetrasomic lines. Finally, the genome-specific and allele-specific markers were developed for the TaCRT-D gene. These findings indicate that TaCRT-D function importantly in plant stress responses, providing a gene target for genetic engineering to increase plant stress tolerance and the functional markers of TaCRT-D for marker-assistant selection in wheat breeding

    Development and Exploitation of KASP Assays for Genes Underpinning Drought Tolerance Among Wheat Cultivars From Pakistan

    Get PDF
    High-throughput genotyping for functional markers offers an excellent opportunity to effectively practice marker-assisted selection (MAS) while breeding cultivars. We developed kompetitive allele-specific PCR (KASP) assays for genes conferring drought tolerance in common wheat (Triticum aestivum L.). In total, 11 KASP assays developed in this study and five already reported assays were used for their application in wheat breeding. We investigated alleles at 16 loci associated with drought tolerance among 153 Pakistani hexaploid wheat cultivars released during 1953–2016; 28 diploid wheat accessions (16 for AA and 12 for BB) and 19 tetraploid wheat (AABB) were used to study the evolutionary history of the studied genes. Superior allelic variations of the studied genes were significantly associated with higher grain yield. Favored haplotypes of TaSnRK2.3-1A, TaSnRK2.3-1B, TaSnRK2.9-5A, TaSAP-7B, and TaLTPs-1A predominated in Pakistani wheat germplasm indicating unconscious pyramiding and selection pressure on favorable haplotypes during selection breeding. TaSnRK2.8-5A, TaDreb-B1, 1-feh w3, TaPPH-7A, TaMOC-7A, and TaPARG-2A had moderate to low frequencies of favorable haplotype among Pakistani wheat germplasm pointing toward introgression of favorable haplotypes by deploying functional markers in marker-assisted breeding. The KASP assays were compared with gel-based markers for reliability and phenotypically validated among 62 Pakistani wheat cultivars. Association analyses showed that the favorable allelic variations were significantly associated with grain yield-contributing traits. The developed molecular marker toolkit of the genes can be instrumental for the wheat breeding in Pakistan

    Genetic dissection of the developmental behaviours of plant height in wheat under diverse water regimes

    Get PDF
    Plant height (PH), a crucial trait related to yield potential in crop plants, is known to be typically quantitatively inherited. However, its full expression can be inhibited by a limited water supply. In this study, the genetic basis of the developmental behaviour of PH was assessed in a 150-line wheat (Triticum aestivum L.) doubled haploid population (Hanxuan 10×Lumai 14) grown in 10 environments (year×site×water regime combinations) by unconditional and conditional quantitative trait locus (QTL) analyses in a mixed linear model. Genes that were expressed selectively during ontogeny were identified. No single QTL was continually active in all periods of PH growth, and QTLs with additive effects (A-QTLs) expressed in the period S1|S0 (the period from the original point to the jointing stage) formed a foundation for PH development. Additive main effects (a effects), which were mostly expressed in S1|S0, were more important than epistatic main effects (aa effects) or QTL×environment interaction (QE) effects, suggesting that S1|S0 was the most significant development period affecting PH growth. A few QTLs, such as QPh.cgb-6B.7, showed high adaptability for water-limited environments. Many QTLs, including four A-QTLs (QPh.cgb-2D.1, QPh.cgb-4B.1, QPh.cgb-4D.1, and QPh.cgb-5A.7) coincident with previously identified reduced height (Rht) genes (Rht8, Rht1, Rht2, and Rht9), interacted with more than one other QTL, indicating that the genetic architecture underlying PH development is a network of genes with additive and epistatic effects. Therefore, based on multilocus combinations in S1|S0, superior genotypes were predicted for guiding improvements in breeding for PH

    TaSnRK2.4, an SNF1-type serine/threonine protein kinase of wheat (Triticum aestivum L.), confers enhanced multistress tolerance in Arabidopsis

    Get PDF
    Osmotic stresses such as drought, salinity, and cold are major environmental factors that limit agricultural productivity worldwide. Protein phosphorylation/dephosphorylation are major signalling events induced by osmotic stress in higher plants. Sucrose non-fermenting 1-related protein kinase2 family members play essential roles in response to hyperosmotic stresses in Arabidopsis, rice, and maize. In this study, the function of TaSnRK2.4 in drought, salt, and freezing stresses in Arabidopsis was characterized. A translational fusion protein of TaSnRK2.4 with green fluorescent protein showed subcellular localization in the cell membrane, cytoplasm, and nucleus. To examine the role of TaSnRK2.4 under various environmental stresses, transgenic Arabidopsis plants overexpressing wheat TaSnRK2.4 under control of the cauliflower mosaic virus 35S promoter were generated. Overexpression of TaSnRK2.4 resulted in delayed seedling establishment, longer primary roots, and higher yield under normal growing conditions. Transgenic Arabidopsis overexpressing TaSnRK2.4 had enhanced tolerance to drought, salt, and freezing stresses, which were simultaneously supported by physiological results, including decreased rate of water loss, enhanced higher relative water content, strengthened cell membrane stability, improved photosynthesis potential, and significantly increased osmotic potential. The results show that TaSnRK2.4 is involved in the regulation of enhanced osmotic potential, growth, and development under both normal and stress conditions, and imply that TaSnRK2.4 is a multifunctional regulatory factor in Arabidopsis. Since the overexpression of TaSnRK2.4 can significantly strengthen tolerance to drought, salt, and freezing stresses and does not retard the growth of transgenic Arabidopsis plants under well-watered conditions, TaSnRK2.4 could be utilized in transgenic breeding to improve abiotic stresses in crops

    Genetic Insight into Yield-Associated Traits of Wheat Grown in Multiple Rain-Fed Environments

    Get PDF
    Background: Grain yield is a key economic driver of successful wheat production. Due to its complex nature, little is known regarding its genetic control. The goal of this study was to identify important quantitative trait loci (QTL) directly and indirectly affecting grain yield using doubled haploid lines derived from a cross between Hanxuan 10 and Lumai 14. Methodology/Principal Findings: Ten yield-associated traits, including yield per plant (YP), number of spikes per plan

    TaNAC2, a NAC-type wheat transcription factor conferring enhanced multiple abiotic stress tolerances in Arabidopsis

    Get PDF
    Environmental stresses such as drought, salinity, and cold are major factors that significantly limit agricultural productivity. NAC transcription factors play essential roles in response to various abiotic stresses. However, the paucity of wheat NAC members functionally characterized to date does not match the importance of this plant as a world staple crop. Here, the function of TaNAC2 was characterized in Arabidopsis thaliana. A fragment of TaNAC2 was obtained from suppression subtractive cDNA libraries of wheat treated with polyethylene glycol, and its full-length cDNA was obtained by searching a full-length wheat cDNA library. Gene expression profiles indicated that TaNAC2 was involved in response to drought, salt, cold, and abscisic acid treatment. To test its function, transgenic Arabidopsis lines overexpressing TaNAC2–GFP controlled by the cauliflower mosaic virus 35S promoter were generated. Overexpression of TaNAC2 resulted in enhanced tolerances to drought, salt, and freezing stresses in Arabidopsis, which were simultaneously demonstrated by enhanced expression of abiotic stress-response genes and several physiological indices. Therefore, TaNAC2 has potential for utilization in transgenic breeding to improve abiotic stress tolerances in crops

    Overexpression of a Common Wheat Gene TaSnRK2.8 Enhances Tolerance to Drought, Salt and Low Temperature in Arabidopsis

    Get PDF
    Drought, salinity and low temperatures are major factors limiting crop productivity and quality. Sucrose non-fermenting1-related protein kinase 2 (SnRK2) plays a key role in abiotic stress signaling in plants. In this study, TaSnRK2.8, a SnRK2 member in wheat, was cloned and its functions under multi-stress conditions were characterized. Subcellular localization showed the presence of TaSnRK2.8 in the cell membrane, cytoplasm and nucleus. Expression pattern analyses in wheat revealed that TaSnRK2.8 was involved in response to PEG, NaCl and cold stresses, and possibly participates in ABA-dependent signal transduction pathways. To investigate its role under various environmental stresses, TaSnRK2.8 was transferred to Arabidopsis under control of the CaMV-35S promoter. Overexpression of TaSnRK2.8 resulted in enhanced tolerance to drought, salt and cold stresses, further confirmed by longer primary roots and various physiological characteristics, including higher relative water content, strengthened cell membrane stability, significantly lower osmotic potential, more chlorophyll content, and enhanced PSII activity. Meanwhile, TaSnRK2.8 plants had significantly lower total soluble sugar levels under normal growing conditions, suggesting that TaSnRK2.8 might be involved in carbohydrate metabolism. Moreover, the transcript levels of ABA biosynthesis (ABA1, ABA2), ABA signaling (ABI3, ABI4, ABI5), stress-responsive genes, including two ABA-dependent genes (RD20A, RD29B) and three ABA-independent genes (CBF1, CBF2, CBF3), were generally higher in TaSnRK2.8 plants than in WT/GFP controls under normal/stress conditions. Our results suggest that TaSnRK2.8 may act as a regulatory factor involved in a multiple stress response pathways
    corecore