89 research outputs found

    Generation and Characterization of Novel Human IRAS Monoclonal Antibodies

    Get PDF
    Imidazoline receptors were first proposed by Bousquet et al., when they studied antihypertensive effect of clonidine. A strong candidate for I1R, known as imidazoline receptor antisera-selected protein (IRAS), has been cloned from human hippocampus. We reported that IRAS mediated agmatine-induced inhibition of opioid dependence in morphine-dependent cells. To elucidate the functional and structure properties of I1R, we developed the newly monoclonal antibody against the N-terminal hIRAS region including the PX domain (10–120aa) through immunization of BALB/c mice with the NusA-IRAS fusion protein containing an IRAS N-terminal (10–120aa). Stable hybridoma cell lines were established and monoclonal antibodies specifically recognized full-length IRAS proteins in their native state by immunoblotting and immunoprecipitation. Monoclonal antibodies stained in a predominantly punctate cytoplasmic pattern when applied to IRAS-transfected HEK293 cells by indirect immunofluorescence assays and demonstrated excellent reactivity in flow immunocytometry. These monoclonal antibodies will provide powerful reagents for the further investigation of hIRAS protein functions

    Supercapacitors (electrochemical capacitors)

    Get PDF
    International audienceRapid development of the technologies based on electric energy in the last decades have stimulated intensive research on efficient power sources. Electrochemical energy conversion and storage systems are based on Faradaic reactions (charge transfer) and electrostatic attraction of ions at the electrode/electrolyte interface. The latter might be an interesting solution for applications requiring moderate energy density, high power rates, and long cycle life. Electrochemical capacitors (ECs) store the charge in a physical manner, hence, their energy density is moderate. At the same time, the lack of electrochemical reactions ensures very high power and long cycle life compared to batteries. Activated carbons with their versatile properties (like specific surface area, well-developed and suitable porosity, heteroatoms in the graphene matrix) are the most popular materials in EC application. This chapter provides a comprehensive overview of the carbon-based materials recently developed, with special attention devoted to those obtained by biomass carbonization and activation. Electrochemical properties demonstrated by such carbons are discussed in respect to their physicochemical characteristic

    Multiplatform Analysis of 12 Cancer Types Reveals Molecular Classification within and across Tissues of Origin

    Get PDF
    Recent genomic analyses of pathologically-defined tumor types identify “within-a-tissue” disease subtypes. However, the extent to which genomic signatures are shared across tissues is still unclear. We performed an integrative analysis using five genome-wide platforms and one proteomic platform on 3,527 specimens from 12 cancer types, revealing a unified classification into 11 major subtypes. Five subtypes were nearly identical to their tissue-of-origin counterparts, but several distinct cancer types were found to converge into common subtypes. Lung squamous, head & neck, and a subset of bladder cancers coalesced into one subtype typified by TP53 alterations, TP63 amplifications, and high expression of immune and proliferation pathway genes. Of note, bladder cancers split into three pan-cancer subtypes. The multi-platform classification, while correlated with tissue-of-origin, provides independent information for predicting clinical outcomes. All datasets are available for data-mining from a unified resource to support further biological discoveries and insights into novel therapeutic strategies

    The Impact of Large-scale Media on Online Marketing

    No full text
    This study aims to explore the relationship between large-scale media (referring to individuals or companies with a large number of followers on social media) and marketing, and to utilize the influence of large-scale media to increase product sales and brand exposure. Specifically, the paper first introduces the concept of centrality, including degree centrality, closeness centrality, and betweenness centrality, as well as their applications in social networks. Then, this study regards large-scale media as nodes in the social network and proposes the centrality concept of large-scale media. Next, this study analyzes the influence and propagation effects of large-scale media in the social network, thereby highlighting the importance of large-scale media in marketing activities. Finally, through empirical analysis, the paper verifies the positive impact of the centrality of large-scale media on product sales and brand exposure. The findings of this study suggest that marketing professionals need to pay more attention to the role and value of large-scale media, and strengthen cooperation with large-scale media in marketing strategies. At the same time, this study proposes suggestions for optimizing marketing strategies using centrality methods, such as finding and cooperating with large-scale media with greater influence, and establishing a relationship network with central nodes. These suggestions can help improve product sales and brand exposure, thus bringing better business benefits to enterprises

    Genome-Wide Analysis of LRR-RLK Gene Family in Four <i>Gossypium</i> Species and Expression Analysis during Cotton Development and Stress Responses

    No full text
    Leucine-rich repeat receptor-like kinases (LRR-RLKs) have been reported to play important roles in plant growth, development, and stress responses. However, no comprehensive analysis of this family has been performed in cotton (Gossypium spp.), which is an important economic crop that suffers various stresses in growth and development. Here we conducted a comprehensive analysis of LRR-RLK family in four Gossypium species (Gossypium arboreum, Gossypium barbadense, Gossypium hirsutum, and Gossypium raimondii). A total of 1641 LRR-RLK genes were identified in the four Gossypium species involved in our study. The maximum-likelihood phylogenetic tree revealed that all the LRR-RLK genes were divided into 21 subgroups. Exon-intron organization structure of LRR-RLK genes kept relatively conserved within subfamilies and between Arabidopsis and Gossypium genomes. Notably, subfamilies XI and XII were found dramatically expanded in Gossypium species. Tandem duplication acted as an important mechanism in expansion of the Gossypium LRR-RLK gene family. Functional analysis suggested that Gossypium LRR-RLK genes were enriched for plant hormone signaling and plant-pathogen interaction pathways. Promoter analysis revealed that Gossypium LRR-RLK genes were extensively regulated by transcription factors (TFs), phytohormonal, and various environmental stimuli. Expression profiling showed that Gossypium LRR-RLK genes were widely involved in stress defense and diverse developmental processes including cotton fiber development and provides insight into potential functional divergence within and among subfamilies. Our study provided valuable information for further functional study of Gossypium LRR-RLK genes

    Genome-Wide Analysis of Cotton Auxin Early Response Gene Families and Their Roles in Somatic Embryogenesis

    No full text
    Auxin is well known to regulate growth and development processes. Auxin early response genes serve as a critical component of auxin signaling and mediate auxin regulation of diverse physiological processes. In the present study, a genome-wide identification and comprehensive analysis of auxin early response genes were conducted in upland cotton. A total of 71 auxin response factor (ARF), 86 Auxin/Indole-3-Acetic Acid (Aux/IAA), 63 Gretchen Hagen3 (GH3), and 194 small auxin upregulated RNA (SAUR) genes were identified in upland cotton, respectively. Phylogenetic analysis revealed that the ARF, GH3, and SAUR families were likely subject to extensive evolutionary divergence between Arabidopsis and upland cotton, while the Aux/IAA family was evolutionary conserved. Expression profiles showed that the ARF, Aux/IAA, GH3, and SAUR family genes were extensively involved in embryogenic competence acquisition of upland cotton callus. The Aux/IAA family genes generally showed a higher expression level in the non-embryogenic callus (NEC) of highly embryogenic cultivar CCRI24 than that of recalcitrant cultivar CCRI12, which may be conducive to initializing the embryogenic transformation. Auxin early response genes were tightly co-expressed with most of the known somatic embryogenesis (SE) related genes, indicating that these genes may regulate upland cotton SE by interacting with auxin early response genes

    Detectability of Repeated Airborne Laser Scanning for Mountain Landslide Monitoring

    No full text
    Multi-temporal airborne laser scanning (ALS) surveys have become a prime consideration for detecting landslide movements and evaluating landslide risk in mountain areas. The minimum elevation change (or detectability) that can be detected by repeated ALS surveys has become a critical threshold for landslide researchers and engineers to decide if ALS is a capable tool for detecting targeted landslides and arranging the minimum time span between two scans if ALS is a choice. The National Center for Airborne Laser Mapping (NCALM) at the University of Houston conducted three repeated ALS surveys at the Slumgullion landslide site in Colorado, U.S. over one week in July of 2015. These repeated ALS surveys provide valuable datasets for evaluating the vertical detectability of multi-temporal ALS surveys in a typical mountain area. According to this study, the difference of digital elevation models (DDEM) derived from ALS has the ability of detecting a minimum elevation change of 5 cm over flatter and moderately rugged terrain areas (slope &lt; 20 degrees) and a minimum of a 10-cm elevation change over rugged terrain areas (20 degrees &lt; slope &lt; 40 degrees). However, the DDEM values over highly rugged terrain areas (slope &gt; 40 degrees), such as cliff and landslide scarps, should be interpolated with caution. Global Navigation Satellite Systems (GNSS) and Terrestrial Laser Scanning (TLS) surveys were also performed at the middle portion of the landslide area for assessing the accuracy of ALS datasets. The accuracy of ALS varies from approximately one decimeter (~10 cm) to one foot (~30 cm) depending on the roughness of terrain surface and vegetation coverage (point density). The detectability and accuracy estimates of ALS measurements obtained from the case study could be used as a reference for estimating the performance of modern ALS in mountain areas with similar topography and vegetation coverage

    Significance of Methylation of FBP1 Gene in Non-Small Cell Lung Cancer

    No full text
    Because NSCLC has poor overall prognosis and is frequently diagnosed at later stage, we aimed to seek novel diagnosis biomarkers or therapy target of the disease in this study. Fructose-1,6-bisphosphatase 1 (FBP1) is a rate-limiting enzyme in gluconeogenesis, which was usually lost in NSCLC due to abnormal methylation in promoter DNA sequence. The clinical data indicated that the methylation rate in FBP1 gene promoter was negatively related to the overall survival of the NSCLC patients. DNA methylation transferase inhibitor 5-aza treatment could significantly increase both expression levels of mRNA and protein in A549 cell line. On the other hand, silence of FBP1 in H460 cell line by using specific siRNA against FBP1 dramatically improved the cell proliferation and cell migration according to the date of FACS and transwell assays. All these findings implied the important roles of FBP1 expression in lung cancer development and progression and the potential use of the methylation status detected in FBP1 promoter region as a novel predictor for prognosis and therapeutic target for NSCLC patients

    A Rapid Terrestrial Laser Scanning Method for Coastal Erosion Studies: A Case Study at Freeport, Texas, USA

    No full text
    Terrestrial laser scanning (TLS) has become a powerful data acquisition technique for high-resolution high-accuracy topographic and morphological studies. Conventional static TLS surveys require setting up numerous reflectors (tie points) in the field for point clouds registration and georeferencing. To reduce surveying time and simplify field operational tasks, we have developed a rapid TLS surveying method that requires only one reflector in the field. The method allows direct georeferencing of point clouds from individual scans to an East&ndash;North&ndash;Height (ENH) coordinate system tied to a stable geodetic reference frame. TLS datasets collected at a segment of the beach&ndash;dune&ndash;wetland area in Freeport, Texas, USA are used to evaluate the performance of the rapid surveying method by comparing with kinematic GPS measurements. The rapid surveying method uses two GPS units mounted on the scanner and a reflector for calculating the northing angle of the scanner&rsquo;s own coordinate system (SOCS). The Online Positioning User Service (OPUS) is recommended for GPS data processing. According to this study, OPUS Rapid-Static (OPUS-RS) solutions retain 1&ndash;2 cm root mean square (RMS) accuracy in the horizontal directions and 2&ndash;3 cm accuracy in the vertical direction for static observational sessions of approximately 30 min in the coastal region of Texas, USA. The rapid TLS surveys can achieve an elevation accuracy (RMS) of approximately 3&ndash;5 cm for georeferenced points and 2&ndash;3 cm for digital elevation models (DEMs). The elevation errors superimposed into the TLS surveying points roughly fit a normal distribution. The proposed TLS surveying method is particularly useful for morphological mapping over time in coastal regions, where strong wind and soft sand prohibit reflectors from remaining strictly stable for a long period. The theories and results presented in this paper are beneficial to researchers who frequently utilize TLS datasets in their research, but do not have opportunities to be involved in field data acquisition
    corecore