5 research outputs found

    Collagen matricryptin promotes cardiac function by mediating scar formation

    Get PDF
    This is an open access article under the CC BY-NC-ND license.Aims A peptide mimetic of a collagen-derived matricryptin (p1159) was shown to reduce left ventricular (LV) dilation and fibrosis after 7 days delivery in a mouse model of myocardial infarction (MI). This suggested p1159 long-term treatment post-MI could have beneficial effects and reduce/prevent adverse LV remodeling. This study aimed to test the potential of p1159 to reduce adverse cardiac remodeling in a chronic MI model and to elucidate p1159 mode-of-action. Materials and methods Using a permanent occlusion MI rodent model, animals received p1159 or vehicle solution up to 28 days. We assessed peptide treatment effects on scar composition and structure and on systolic function. To assess peptide effects on scar vascularization, a cohort of mice were injected with Griffonia simplicifolia isolectin-B4. To investigate p1159 mode-of-action, LV fibroblasts from na脙炉ve animals were treated with increasing doses of p1159. Key findings Matricryptin p1159 significantly improved systolic function post-MI (2-fold greater EF compared to controls) by reducing left ventricular dilation and inducing the formation of a compliant and organized infarct scar, which promoted LV contractility and preserved the structural integrity of the heart. Specifically, infarcted scars from p1159-treated animals displayed collagen fibers aligned parallel to the epicardium, to resist circumferential stretching, with reduced levels of cross-linking, and improved tissue perfusion. In addition, we found that p1159 increases cardiac fibroblast migration by activating RhoA pathways via the membrane receptor integrin 脦卤4. Significance Our data indicate p1159 treatment reduced adverse LV remodeling post-MI by modulating the deposition, arrangement, and perfusion of the fibrotic scar.ECU Open Access Publishing Support Fun

    Building a Better Infarct: Modulation of Collagen Cross-Linking to Increase Infarct Stiffness and Reduce Left Ventricular Dilation Post-Myocardial Infarction

    Get PDF
    Matrix metalloproteinase-9 (MMP-9) deletion attenuates collagen accumulation and dilation of the left ventricle (LV) post-myocardial infarction (MI); however the biomechanical mechanisms underlying the improved outcome are poorly understood.The aim of this study was to determine the mechanisms whereby MMP-9 deletion alters collagen network composition and assembly in the LV post-MI to modulate the mechanical properties of myocardial scar tissue. Adult C57BL/6J wild-type (WT; n = 88) and MMP-9 null (MMP-9-/-; n = 92) mice of both sexes underwent permanent coronary artery ligation and were compared to day 0 controls (n = 42). At day 7 post-MI, WT LVs displayed a 3-fold increase in end-diastolic volume, while MMP-9-/- showed only a 2-fold increase (p \u3c 0.05). Biaxial mechanical testing revealed that MMP-9-/- infarcts were stiffer than WT infarcts, as indicated by a 1.3-fold reduction in predicted in vivo circumferential stretch (p \u3c 0.05). Paradoxically, MMP-9-/- infarcts had a 1.8-fold reduction in collagen deposition (p \u3c 0.05). This apparent contradiction was explained by a 3.1-fold increase in lysyl oxidase (p \u3c 0.05) in MMP-9-/- infarcts, indicating that MMP-9 deletion increased collagen cross-linking activity. Furthermore, MMP-9 deletion led to a 3.0-fold increase in bone morphogenetic protein-1, the metalloproteinase that cleaves pro-collagen and pro-lysyl oxidase (p \u3c 0.05) and reduced fibronectin fragmentation by 49% (p \u3c 0.05) to enhance lysyl oxidase activity. We conclude that MMP-9 deletion increases infarct stiffness and prevents LV dilation by reducing collagen degradation and facilitating collagen assembly and cross-linking through preservation of the fibronectin network and activation of lysyl oxidase
    corecore