150 research outputs found
PRKCA Polymorphism Changes the Neural Basis of Episodic Remembering in Healthy Individuals
Everyday functioning relies on episodic memory, the conscious retrieval of past experiences, but this crucial cognitive ability declines severely with aging and disease. Vulnerability to memory decline varies across individuals however, producing differences in the time course and severity of memory problems that complicate attempts at diagnosis and treatment. Here we identify a key source of variability, by examining gene dependent changes in the neural basis of episodic remembering in healthy adults, targeting seven polymorphisms previously linked to memory. Scalp recorded Event-Related Potentials (ERPs) were measured while participants remembered words, using an item recognition task that requires discrimination between studied and unstudied stimuli. Significant differences were found as a consequence of a Single Nucleotide Polymorphism (SNP) in just one of the tested genes, PRKCA (rs8074995). Participants with the common G/G variant exhibited left parietal old/new effects, which are typically seen in word recognition studies, reflecting recollection-based remembering. During the same stage of memory retrieval participants carrying a rarer A variant exhibited an atypical pattern of brain activity, a topographically dissociable frontally-distributed old/new effect, even though behavioural performance did not differ between groups. Results replicated in a second independent sample of participants. These findings demonstrate that the PRKCA genotype is important in determining how episodic memories are retrieved, opening a new route towards understanding individual differences in memory
The monoclonal antibody EPR1614Y against the stem cell biomarker keratin K15 lacks specificity and reacts with other keratins
Keratin 15 (K15), a type I keratin, which pairs with K5 in epidermis, has been used extensively as a biomarker for stem cells. Two commercial antibodies, LHK15, a mouse monoclonal and EPR1614Y, a rabbit monoclonal, have been widely employed to study K15 expression. Here we report differential reactivity of these antibodies on epithelial cells and tissue sections. Although the two antibodies specifically recognised K15 on western blot, they reacted differently on skin sections and cell lines. LHK15 reacted in patches, whereas EPR1614Y reacted homogenously with the basal keratinocytes in skin sections. In cultured cells, LHK15 did not react with K15 deficient NEB-1, KEB-11, MCF-7 and SW13 cells expressing only exogenous K8 and K18 but reacted when these cells were transduced with K15. On the other hand, EPR1614Y reacted with these cells even though they were devoid of K15. Taken together these results suggest that EPR1614Y recognises a conformational epitope on keratin filaments which can be reconstituted by other keratins as well as by K15. In conclusion, this report highlights that all commercially available antibodies may not be equally specific in identifying the K15 positive stem cell
Electrocortical evidence for long-term incidental spatial learning through modified navigation instructions
© Springer Nature Switzerland AG 2018. The use of Navigation Assistance Systems for spatial orienting has become increasingly popular. Such automated navigation support, however, comes with a reduced processing of the surrounding environment and often with a decline of spatial orienting ability. To prevent such deskilling and to support spatial learning, the present study investigated incidental spatial learning by comparing standard navigation instructions with two modified navigation instruction conditions. The first modified instruction condition highlighted landmarks and provided additional redundant information regarding the landmark (contrast condition), while the second highlighted landmarks and included information of personal interest to the participant (personal-reference condition). Participants’ spatial knowledge of the previously unknown virtual city was tested three weeks later. Behavioral and electroencephalographic (EEG) data demonstrated enhanced spatial memory performance for participants in the modified navigation instruction conditions without further differentiating between modified instructions. Recognition performance of landmarks was better and the late positive complex of the event-related potential (ERP) revealed amplitude differences reflecting an increased amount of recollected information for modified navigation instructions. The results indicate a significant long-term spatial learning effect when landmarks are highlighted during navigation instructions
Atypical Neurophysiology Underlying Episodic and Semantic Memory in Adults with Autism Spectrum Disorder
Individuals with autism spectrum disorder (ASD) show atypicalities in episodic memory (Boucher et al. in Psychological Bulletin, 138 (3), 458-496, 2012). We asked participants to recall the colours of a set of studied line drawings (episodic judgement), or to recognize line drawings alone (semantic judgement). Cycowicz et al. (Journal of Experimental Child Psychology, 65, 171-237, 2001) found early (300 ms onset) posterior old-new event-related potential effects for semantic judgements in typically developing (TD) individuals, and occipitally focused negativity (800 ms onset) for episodic judgements. Our results replicated findings in TD individuals and demonstrate attenuated early old-new effects in ASD. Late posterior negativity was present in the ASD group, but was not specific to this time window. This non-specificity may contribute to the atypical episodic memory judgements characteristic of individuals with ASD
Quantitative real-time RT-PCR validation of differential mRNA expression of SPARC, FADD, Fascin, COL7A1, CK4, TGM3, ECM1, PPL and EVPL in esophageal squamous cell carcinoma
BACKGROUND: Esophageal squamous cell carcinoma (ESCC) is one of the most malignant tumors and typically presents at an advanced and rapidly fatal stage. To better understand the role of genetics in the etiology and prevention of ESCC and to identify potential susceptibility genes as well as early detection markers, we previously compared tumor and matched normal tissues from ESCC patients from a high-risk area of China using cDNA expression microarrays and identified 41 differentially-expressed genes (13 over-expressed and 28 under-expressed). METHODS: In the current study, we validated and quantitated differential mRNA expression in a sample of nine of these 41 genes, including four that were over-expressed (SPARC, FADD, Fascin, COL7A1), and five that were under-expressed (CK4, TGM3, ECM1, PPL, EVPL), in 75 new ESCC patients using quantitative Real-time RT-PCR and the 2(-ΔΔCT )method to examine both tumor and matched normal tissue. In addition, we examined expression patterns for these genes by selected demographic and clinical characteristics. RESULTS: Four previously over-expressed (tumor ≥2-fold normal) genes were all increased in the majority of new ESCC patients: SPARC was increased in 71% of patients, Fascin in 70%, FADD in 63%, and COL7A1 in 57%. Five previously under-expressed (tumor ≤0.5-fold normal) genes similarly showed decreased mRNA expression in two-thirds or more of patients: CK4 was decreased in 83% of patients, TGM3 in 77%, ECM1 in 73%, and PPL and EVPL in 67% each. In subset analyses, associations with age (for COL7A1), family history (for PPL and ECM1), and alcohol use (for SPARC and Fascin) were also noted. CONCLUSION: These data indicate that these nine genes have consistent differential mRNA expression, validating results of our previous cDNA array results, and affirming their potential role in the early detection of ESCC
Alcohol-Related Context Modulates Performance of Social Drinkers in a Visual Go/No-Go Task: A Preliminary Assessment of Event-Related Potentials
Background Increased alcohol cue-reactivity and altered inhibitory processing have been reported in heavy social drinkers and alcohol-dependent patients, and are associated with relapse. In social drinkers, these two processes have been usually studied separately by recording event-related potentials (ERPs) during rapid picture presentation. The aim of our study was to confront social drinkers to a task triggering high alcohol cue-reactivity, to verify whether it specifically altered inhibitory performance, by using long-lasting background picture presentation. Methods ERP were recorded during visual Go/No-Go tasks performed by social drinkers, in which a frequent Go signal (letter “M”), and a rare No-Go signal (letter “W”) were superimposed on three different types of background pictures: neutral (black background), alcohol-related and non alcohol-related. Results Our data suggested that heavy social drinkers made more commission errors than light drinkers, but only in the alcohol-related context. Neurophysiologically, this was reflected by a delayed No-Go P3 component. Conclusions Elevated alcohol cue-reactivity may lead to poorer inhibitory performance in heavy social drinkers, and may be considered as an important vulnerability factor in developing alcohol misuse. Prevention programs should be designed to decrease the high arousal of alcohol stimuli and strengthen cognitive control in young, at-risk individuals.This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
Physiological basis and image processing in functional magnetic resonance imaging: Neuronal and motor activity in brain
Functional magnetic resonance imaging (fMRI) is recently developing as imaging modality used for mapping hemodynamics of neuronal and motor event related tissue blood oxygen level dependence (BOLD) in terms of brain activation. Image processing is performed by segmentation and registration methods. Segmentation algorithms provide brain surface-based analysis, automated anatomical labeling of cortical fields in magnetic resonance data sets based on oxygen metabolic state. Registration algorithms provide geometric features using two or more imaging modalities to assure clinically useful neuronal and motor information of brain activation. This review article summarizes the physiological basis of fMRI signal, its origin, contrast enhancement, physical factors, anatomical labeling by segmentation, registration approaches with examples of visual and motor activity in brain. Latest developments are reviewed for clinical applications of fMRI along with other different neurophysiological and imaging modalities
- …