127 research outputs found
Sequential and Spontaneous Star Formation Around the Mid-Infrared Halo HII Region KR 140
We use 2MASS and MSX infrared observations, along with new molecular line
(CO) observations, to examine the distribution of young stellar objects (YSOs)
in the molecular cloud surrounding the halo HII region KR 140 in order to
determine if the ongoing star-formation activity in this region is dominated by
sequential star formation within the photodissociation region (PDR) surrounding
the HII region. We find that KR 140 has an extensive population of YSOs that
have spontaneously formed due to processes not related to the expansion of the
HII region. Much of the YSO population in the molecular cloud is concentrated
along a dense filamentary molecular structure, traced by C18O, that has not
been erased by the formation of the exciting O star. Some of the previously
observed submillimetre clumps surrounding the HII region are shown to be sites
of recent intermediate and low-mass star formation while other massive starless
clumps clearly associated with the PDR may be the next sites of sequential star
formation.Comment: Accepted for publication in MNRAS, 8 pages, 10 figure
On the metallicity dependence of crystalline silicates in oxygen-rich asymptotic giant branch stars and red supergiants
We investigate the occurrence of crystalline silicates in oxygen-rich evolved
stars across a range of metallicities and mass-loss rates. It has been
suggested that the crystalline silicate feature strength increases with
increasing mass-loss rate, implying a correlation between lattice structure and
wind density. To test this, we analyse Spitzer IRS and Infrared Space
Observatory SWS spectra of 217 oxygen-rich asymptotic giant branch stars and 98
red supergiants in the Milky Way, the Large and Small Magellanic Clouds and
Galactic globular clusters. These encompass a range of spectral morphologies
from the spectrally-rich which exhibit a wealth of crystalline and amorphous
silicate features to 'naked' (dust-free) stars. We combine spectroscopic and
photometric observations with the GRAMS grid of radiative transfer models to
derive (dust) mass-loss rates and temperature. We then measure the strength of
the crystalline silicate bands at 23, 28 and 33 microns. We detect crystalline
silicates in stars with dust mass-loss rates which span over 3 dex, down to
rates of ~10^-9 solar masses/year. Detections of crystalline silicates are more
prevalent in higher mass-loss rate objects, though the highest mass-loss rate
objects do not show the 23-micron feature, possibly due to the low temperature
of the forsterite grains or it may indicate that the 23-micron band is going
into absorption due to high column density. Furthermore, we detect a change in
the crystalline silicate mineralogy with metallicity, with enstatite seen
increasingly at low metallicity.Comment: Accepted for publication in MNRAS, 24 pages, 16 figure
Molecular ions in L1544. II. The ionization degree
The maps presented in Paper I are here used to infer the variation of the
column densities of HCO+, DCO+, N2H+, and N2D+ as a function of distance from
the dust peak. These results are interpreted with the aid of a crude chemical
model which predicts the abundances of these species as a function of radius in
a spherically symmetric model with radial density distribution inferred from
the observations of dust emission at millimeter wavelengths and dust absorption
in the infrared. Our main observational finding is that the N(N2D+)/N(N2H+)
column density ratio is of order 0.2 towards the L1544 dust peak as compared to
N(DCO+)/N(HCO+) = 0.04. We conclude that this result as well as the general
finding that N2H+ and N2D+ correlate well with the dust is caused by CO being
depleted to a much higher degree than molecular nitrogen in the high density
core of L1544. Depletion also favors deuterium enhancement and thus N2D+, which
traces the dense and highly CO-depleted core nucleus, is much more enhanced
than DCO+. Our models do not uniquely define the chemistry in the high density
depleted nucleus of L1544 but they do suggest that the ionization degree is a
few times 10^{-9} and that the ambipolar diffusion time scale is locally
similar to the free fall time. It seems likely that the lower limit which one
obtains to ionization degree by summing all observable molecular ions is not a
great underestimate of the true ionization degree. We predict that atomic
oxygen is abundant in the dense core and, if so, H3O+ may be the main ion in
the central highly depleted region of the core.Comment: 31 pages, 8 figures, to be published in Ap
On the Influence of Uncertainties in Chemical Reaction Rates on Results of the Astrochemical Modelling
With the chemical reaction rate database UMIST95 (Millar et al. 1997) we
analyze how uncertainties in rate constants of gas-phase chemical reactions
influence the modelling of molecular abundances in the interstellar medium.
Random variations are introduced into the rate constants to estimate the
scatter in theoretical abundances. Calculations are performed for dark and
translucent molecular clouds where gas phase chemistry is adequate. Similar
approach was used by Pineau des Forets & Roueff (2000) for the study of
chemical bistability. All the species are divided into 6 sensitivity groups
according to the value of the scatter in their model abundances computed with
varied rate constants. It is shown that the distribution of species within
these groups depends on the number of atoms in a molecule and on the adopted
physical conditions. The simple method is suggested which allows to single out
reactions that are most important for the evolution of a given species.Comment: 4 pages. To appear in the proceedings of the 4th Cologne-Bonn Zermatt
Symposiu
Density of states in random lattices with translational invariance
We propose a random matrix approach to describe vibrational excitations in
disordered systems. The dynamical matrix M is taken in the form M=AA^T where A
is some real (not generally symmetric) random matrix. It guaranties that M is a
positive definite matrix which is necessary for mechanical stability of the
system. We built matrix A on a simple cubic lattice with translational
invariance and interaction between nearest neighbors. We found that for certain
type of disorder phonons cannot propagate through the lattice and the density
of states g(w) is a constant at small w. The reason is a breakdown of affine
assumptions and inapplicability of the elasticity theory. Young modulus goes to
zero in the thermodynamic limit. It strongly reminds of the properties of a
granular matter at the jamming transition point. Most of the vibrations are
delocalized and similar to diffusons introduced by Allen, Feldman et al., Phil.
Mag. B v.79, 1715 (1999).Comment: 4 pages, 5 figure
Angular diameters, fluxes and extinction of compact planetary nebulae: further evidence for steeper extinction towards the Bulge
We present values for angular diameter, flux and extinction for 70 Galactic
planetary nebulae observed using narrow band filters. Angular diameters are
derived using constant emissivity shell and photoionization line emission
models. The mean of the results from these two models are presented as our best
estimate. Contour plots of 36 fully resolved objects are included and the low
intensity contours often reveal an elliptical structure that is not always
apparent from FWHM measurements. Flux densities are determined, and for both
H-alpha and O[III] there is little evidence of any systematic differences
between observed and catalogued values. Observed H-alpha extinction values are
determined using observed H-alpha and catalogued radio fluxes. H-alpha
extinction values are also derived from catalogued H-alpha and H-beta flux
values by means of an Rv dependent extinction law. Rv is then calculated in
terms of observed extinction values and catalogued H-alpha and H-beta flux
values. Comparing observed and catalogue extinction values for a subset of
Bulge objects, observed values tend to be lower than catalogue values
calculated with Rv = 3.1. For the same subset we calculate = 2.0,
confirming that toward the Bulge interstellar extinction is steeper than Rv =
3.1. For the inner Galaxy a relation with the higher supernova rate is
suggested, and that the low-density warm ionized medium is the site of the
anomalous extinction. Lowvalues of extinction are also derived using dust
models with a turnover radius of 0.08 microns.Comment: Accepted by MNRAS. 17 pages, 9 figures (including 36 contour plots of
PNe), 5 Tables (including 2 large tables of angular diameters, fluxes and
extinction
The SAGE-Spec Spitzer Legacy program: the life-cycle of dust and gas in the Large Magellanic Cloud. Point source classification – III
The Infrared Spectrograph (IRS) on the Spitzer Space Telescope observed nearly 800 point sources in the Large Magellanic Cloud (LMC), taking over 1000 spectra. 197 of these targets were observed as part of the SAGE-Spec Spitzer Legacy program; the remainder are from a variety of different calibration, guaranteed time and open time projects. We classify these point sources into types according to their infrared spectral features, continuum and spectral energy distribution shape, bolometric luminosity, cluster membership and variability information, using a decision-tree classification method. We then refine the classification using supplementary information from the astrophysical literature. We find that our IRS sample is comprised substantially of YSO and H ii regions, post-main-sequence low-mass stars: (post-)asymptotic giant branch stars and planetary nebulae and massive stars including several rare evolutionary types. Two supernova remnants, a nova and several background galaxies were also observed. We use these classifications to improve our understanding of the stellar populations in the LMC, study the composition and characteristics of dust species in a variety of LMC objects, and to verify the photometric classification methods used by mid-IR surveys. We discover that some widely used catalogues of objects contain considerable contamination and others are missing sources in our sample
Physical Origin of the Boson Peak Deduced from a Two-Order-Parameter Model of Liquid
We propose that the boson peak originates from the (quasi-) localized
vibrational modes associated with long-lived locally favored structures, which
are intrinsic to a liquid state and are randomly distributed in a sea of
normal-liquid structures. This tells us that the number density of locally
favored structures is an important physical factor determining the intensity of
the boson peak. In our two-order-parameter model of the liquid-glass
transition, the locally favored structures act as impurities disturbing
crystallization and thus lead to vitrification. This naturally explains the
dependence of the intensity of the boson peak on temperature, pressure, and
fragility, and also the close correlation between the boson peak and the first
sharp diffraction peak (or prepeak).Comment: 5 pages, 1 figure, An error in the reference (Ref. 7) was correcte
Spitzer infrared spectrograph point source classification in the Small Magellanic Cloud
The Magellanic Clouds are uniquely placed to study the stellar contribution to dust emission. Individual stars can be resolved in these systems even in the mid-infrared, and they are close enough to allow detection of infrared excess caused by dust. We have searched the Spitzer Space Telescope data archive for all Infrared Spectrograph (IRS) staring-mode observations of the Small Magellanic Cloud (SMC) and found that 209 Infrared Array Camera (IRAC) point sources within the footprint of the Surveying the Agents of Galaxy Evolution in the Small Magellanic Cloud (SAGE-SMC) Spitzer Legacy programme were targeted, within a total of 311 staring-mode observations. We classify these point sources using a decision tree method of object classification, based on infrared spectral features, continuum and spectral energy distribution shape, bolometric luminosity, cluster membership and variability information. We find 58 asymptotic giant branch (AGB) stars, 51 young stellar objects, 4 post-AGB objects, 22 red supergiants, 27 stars (of which 23 are dusty OB stars), 24 planetary nebulae (PNe), 10 Wolf–Rayet stars, 3 H II regions, 3 R Coronae Borealis stars, 1 Blue Supergiant and 6 other objects, including 2 foreground AGB stars. We use these classifications to evaluate the success of photometric classification methods reported in the literature
- …