We propose a random matrix approach to describe vibrational excitations in
disordered systems. The dynamical matrix M is taken in the form M=AA^T where A
is some real (not generally symmetric) random matrix. It guaranties that M is a
positive definite matrix which is necessary for mechanical stability of the
system. We built matrix A on a simple cubic lattice with translational
invariance and interaction between nearest neighbors. We found that for certain
type of disorder phonons cannot propagate through the lattice and the density
of states g(w) is a constant at small w. The reason is a breakdown of affine
assumptions and inapplicability of the elasticity theory. Young modulus goes to
zero in the thermodynamic limit. It strongly reminds of the properties of a
granular matter at the jamming transition point. Most of the vibrations are
delocalized and similar to diffusons introduced by Allen, Feldman et al., Phil.
Mag. B v.79, 1715 (1999).Comment: 4 pages, 5 figure