176 research outputs found

    Infinite number of MSSMs from heterotic line bundles?

    Full text link
    We consider heterotic E8xE8 supergravity compactified on smooth Calabi-Yau manifolds with line bundle gauge backgrounds. Infinite sets of models that satisfy the Bianchi identities and flux quantization conditions can be constructed by letting their background flux quanta grow without bound. Even though we do not have a general proof, we find that all examples are at the boundary of the theory's validity: the Donaldson-Uhlenbeck-Yau equations, which can be thought of as vanishing D-term conditions, cannot be satisfied inside the Kaehler cone unless a growing number of scalar Vacuum Expectation Values (VEVs) is switched on. As they are charged under various line bundles simultaneously, the gauge background gets deformed by these VEVs to a non-Abelian bundle. In general, our physical expectation is that such infinite sets of models should be impossible, since they never seem to occur in exact CFT constructions.Comment: LaTeX, 8 pages, 4 tables, some references and comments adde

    The influence of a magnetic field on photon beam radiotherapy in a normal human TK6 lymphoblastoid cell line

    Get PDF
    Background: The implementation of magnetic resonance imaging (MRI) guided radiotherapy (RT) continues to increase. Very limited in-vitro data on the interaction of ionizing radiation and magnetic fields (MF) have been published. In these experiments we focused on the radiation response in a MF of the TK6 human lymphoblastoid cells which are known to be highly radiosensitive due to efficient radiation-induced apoptosis. Methods: Clonogenicity was determined 12–14 days after irradiation with 1–4 Gy 6 MV photons with or without a 1.0 Tesla MF. Furthermore, alterations in cell cycle distribution and rates of radiation induced apoptosis (FACS analysis of cells with sub-G1 DNA content) were analyzed. Results: Clonogenic survival showed an exponential dose-dependence, and the radiation sensitivity parameter (α = 1.57/Gy) was in accordance with earlier reports. Upon comparing the clonogenic survival between the two groups, identical results within error bars were obtained. The survival fractions at 2 Gy were 9% (without MF) and 8.5% (with MF), respectively. Conclusion: A 1.0 Tesla MF does not affect the clonogenicity of TK6 cells irradiated with 1–4 Gy 6MV photons. This supports the use of MRI guided RT, however ongoing research on the interaction of MF and radiotherapy is warranted

    Moduli backreaction and supersymmetry breaking in string-inspired inflation models

    Full text link
    We emphasize the importance of effects from heavy fields on supergravity models of inflation. We study, in particular, the backreaction of stabilizer fields and geometric moduli in the presence of supersymmetry breaking. Many effects do not decouple even if those fields are much heavier than the inflaton field. We apply our results to successful models of Starobinsky-like inflation and natural inflation. In most scenarios producing a plateau potential it proves difficult to retain the flatness of the potential after backreactions are taken into account. Some of them are incompatible with non-perturbative moduli stabilization. In natural inflation there exist a number of models which are not constrained by backreactions at all. In those cases the correction terms from heavy fields have the same inflaton-dependence as the uncorrected potential, so that inflation may be possible even for very large gravitino masses.Comment: 29 pages, 1 figure, comments added, subsection 2.3 added, published versio

    Rational F-Theory GUTs without exotics

    Full text link
    We construct F-theory GUT models without exotic matter, leading to the MSSM matter spectrum with potential singlet extensions. The interplay of engineering explicit geometric setups, absence of four-dimensional anomalies, and realistic phenomenology of the couplings places severe constraints on the allowed local models in a given geometry. In constructions based on the spectral cover we find no model satisfying all these requirements. We then provide a survey of models with additional U(1) symmetries arising from rational sections of the elliptic fibration in toric constructions and obtain phenomenologically appealing models based on SU(5) tops. Furthermore we perform a bottom-up exploration beyond the toric section constructions discussed in the literature so far and identify benchmark models passing all our criteria, which can serve as a guideline for future geometric engineering.Comment: 27 Pages, 1 Figur

    The endocannabinoid system controls food intake via olfactory processes

    Get PDF
    Comment in Sensory systems: the hungry sense. [Nat Rev Neurosci. 2014] Inhaling: endocannabinoids and food intake. [Nat Neurosci. 2014]; International audience; Hunger arouses sensory perception, eventually leading to an increase in food intake, but the underlying mechanisms remain poorly understood. We found that cannabinoid type-1 (CB1) receptors promote food intake in fasted mice by increasing odor detection. CB1 receptors were abundantly expressed on axon terminals of centrifugal cortical glutamatergic neurons that project to inhibitory granule cells of the main olfactory bulb (MOB). Local pharmacological and genetic manipulations revealed that endocannabinoids and exogenous cannabinoids increased odor detection and food intake in fasted mice by decreasing excitatory drive from olfactory cortex areas to the MOB. Consistently, cannabinoid agonists dampened in vivo optogenetically stimulated excitatory transmission in the same circuit. Our data indicate that cortical feedback projections to the MOB crucially regulate food intake via CB1 receptor signaling, linking the feeling of hunger to stronger odor processing. Thus, CB1 receptor-dependent control of cortical feedback projections in olfactory circuits couples internal states to perception and behavior

    A perfect match of MSSM-like orbifold and resolution models via anomalies

    Full text link
    Compactification of the heterotic string on toroidal orbifolds is a promising set-up for the construction of realistic unified models of particle physics. The target space dynamics of such models, however, drives them slightly away from the orbifold point in moduli space. This resolves curvature singularities, but makes the string computations very difficult. On these smooth manifolds we have to rely on an effective supergravity approximation in the large volume limit. By comparing an orbifold example with its blow-up version, we try to transfer the computational power of the orbifold to the smooth manifold. Using local properties, we establish a perfect map of the the chiral spectra as well as the (local) anomalies of these models. A key element in this discussion is the Green-Schwarz anomaly polynomial. It allows us to identify those redefinitions of chiral fields and localized axions in the blow-up process which are relevant for the interactions (such as Yukawa-couplings) in the model on the smooth space.Comment: 2+35 pages, 1 figur

    Gauged Linear Sigma Models for toroidal orbifold resolutions

    Full text link
    Toroidal orbifolds and their resolutions are described within the framework of (2,2) Gauged Linear Sigma Models (GLSMs). Our procedure describes two-tori as hypersurfaces in (weighted) projective spaces. The description is chosen such that the orbifold singularities correspond to the zeros of their homogeneous coordinates. The individual orbifold singularities are resolved using a GLSM guise of non-compact toric resolutions, i.e. replacing discrete orbifold actions by Abelian worldsheet gaugings. Given that we employ the same global coordinates for both the toroidal orbifold and its resolutions, our GLSM formalism confirms the gluing procedure on the level of divisors discussed by Lust et al. Using our global GLSM description we can study the moduli space of such toroidal orbifolds as a whole. In particular, changes in topology can be described as phase transitions of the underlying GLSM. Finally, we argue that certain partially resolvable GLSMs, in which a certain number of fixed points can never be resolved, might be useful for the study of mini-landscape orbifold MSSMs.Comment: 71 pages, 2 figure

    Singular Location and Signaling Profile of Adenosine A2A-Cannabinoid CB1 Receptor Heteromers in the Dorsal Striatum

    Get PDF
    The dorsal striatum is a key node for many neurobiological processes such as motor activity, cognitive functions, and affective processes. The proper functioning of striatal neurons relies critically on metabotropic receptors. Specifically, the main adenosine and endocannabinoid receptors present in the striatum, ie, adenosine A2A receptor (A2AR) and cannabinoid CB1 receptor (CB1R), are of pivotal importance in the control of neuronal excitability. Facilitatory and inhibitory functional interactions between striatal A2AR and CB1R have been reported, and evidence supports that this cross-talk may rely, at least in part, on the formation of A2AR-CB1R heteromeric complexes. However, the specific location and properties of these heteromers have remained largely unknown. Here, by using techniques that allowed a precise visualization of the heteromers in situ in combination with sophisticated genetically-modified animal models, together with biochemical and pharmacological approaches, we provide a high resolution expression map and a detailed functional characterization of A2AR-CB1R heteromers in the dorsal striatum. Specifically, our data unveil that the A2AR-CB1R heteromer (i) is essentially absent from corticostriatal projections and striatonigral neurons, and, instead, is largely present in striatopallidal neurons, (ii) displays a striking G protein-coupled signaling profile, where co-stimulation of both receptors leads to strongly reduced downstream signaling, and (iii) undergoes an unprecedented dysfunction in Huntington’s disease, an archetypal disease that affects striatal neurons. Altogether, our findings may open a new conceptual framework to understand the role of coordinated adenosine-endocannabinoid signaling in the indirect striatal pathway, which may be relevant in motor function and neurodegenerative diseases
    • 

    corecore