624 research outputs found

    Aspects of the conformal operator product expansion in AdS/CFT correspondence

    Get PDF
    We present a detailed analysis of a scalar conformal four-point function obtained from AdS/CFT correspondence. We study the scalar exchange graphs in AdS and discuss their analytic properties. Using methods of conformal partial wave analysis, we present a general procedure to study conformal four-point functions in terms of exchanges of scalar and tensor fields. The logarithmic terms in the four-point functions are connected to the anomalous dimensions of the exchanged fields. Comparison of the results from AdS graphs with the conformal partial wave analysis, suggests a possible general form for the operator product expansion of scalar fields in the boundary CFT.Comment: 31 pages, LaTeX, accepted for publication in ATM

    How quickly do cloud droplets form on atmospheric particles?

    Get PDF
    International audienceThe influence of aerosols on cloud properties is an important modulator of the climate system. Traditional Köhler theory predicts the equilibrium concentration of cloud condensation nuclei (CCN); however, it is not known to what extent particles exist in the atmosphere that may be prevented from acting as CCN by kinetic limitations. We measured the rate of cloud droplet formation on atmospheric particles sampled at four sites across the United States during the summer of 2006: Great Smoky Mountain National Park, TN; Bondville, IL; Houston, TX; and the Atmospheric Radiation Measurement Program Southern Great Plains site near Lamont, OK. We express droplet growth rates with the mass accommodation coefficient (?), and report values of ? measured in the field normalized to the mean ? measured for lab-generated ammonium sulfate (AS) particles (i.e., ?'=?/?AS). Overall, 61% of ambient CCN grew at a rate similar to AS. We report the fraction of CCN that were "low-?'" (?'?0.33). Of the 16 days during which these measurements were made, 7 had relatively few low-?'CCN (77% during at least one ~30 min period). Day to day variability was greatest in Tennessee and Illinois, and low-?' CCN were most prevalent on days when back trajectories suggested that air was arriving from aloft. The highest fractions of low-?' CCN in Houston and Illinois occurred around local noon, and decreased later in the day. These results suggest that for some air masses, accurate quantification of CCN concentrations may need to account for kinetic limitations

    Full phase stabilization of a Yb:fiber femtosecond frequency comb via high-bandwidth transducers

    Get PDF
    We present full phase stabilization of an amplified Yb:fiber femtosecond frequency comb using an intra-cavity electro-optic modulator and an acousto-optic modulator. These transducers provide high servo bandwidths of 580 kHz and 250 kHz for frep and fceo, producing a robust and low phase noise fiber frequency comb. The comb was self-referenced with an f - 2f interferometer and phase locked to an ultra-stable optical reference used for the JILA Sr optical clock at 698 nm, exhibiting 0.21 rad and 0.47 rad of integrated phase errors (over 1 mHz - 1 MHz) respectively. Alternatively, the comb was locked to two optical references at 698 nm and 1064 nm, obtaining 0.43 rad and 0.14 rad of integrated phase errors respectively

    Forecasting Proximal Femur and Wrist Fracture Caused by a Fall to the Side during Space Exploration Missions to the Moon and Mars

    Get PDF
    The possibility of bone fracture in space is a concern due to the negative impact it could have on a mission. The Bone Fracture Risk Module (BFxRM) developed at the NASA Glenn Research Center is a statistical simulation that quantifies the probability of bone fracture at specific skeletal locations for particular activities or events during space exploration missions. This paper reports fracture probability predictions for the proximal femur and wrist resulting from a fall to the side during an extravehicular activity (EVA) on specific days of lunar and Martian exploration missions. The risk of fracture at the proximal femur on any given day of the mission is small and fairly constant, although it is slightly greater towards the end of the mission, due to a reduction in proximal femur bone mineral density (BMD). The risk of wrist fracture is greater than the risk of hip fracture and there is an increased risk on Mars since it has a higher gravitational environment than the moon. The BFxRM can be used to help manage the risk of bone fracture in space as an engineering tool that is used during mission operation and resource planning

    Broadband Phase-Noise Suppression in a Yb-Fiber Frequency Comb

    Full text link
    We report a simple technique to suppress high frequency phase noise of a Yb-based fiber optical frequency comb using an active intensity noise servo. Out-of-loop measurements of the phase noise using an optical heterodyne beat with a continuous wave (cw) laser show suppression of phase noise by \geq7 dB out to Fourier frequencies of 100 kHz with a unity-gain crossing of -700 kHz. These results are enabled by the strong correlation between the intensity and phase noise of the laser. Detailed measurements of intensity and phase noise spectra, as well as transfer functions, reveal that the dominant phase and intensity noise contribution above -100 kHz is due to amplified spontaneous emission (ASE) or other quantum noise sources.Comment: 4 pages, 3 figure

    Causal trajectories description of atom diffraction by surfaces

    Get PDF
    9 pages, 7 figures -- PACS numbers: 79.20.Rf, 03.65.Sq, 03.65.BzThe method of quantum trajectories proposed by de Broglie and Bohm is applied to the study of atom diffraction by surfaces. As an example, a realistic model for the scattering of He off corrugated Cu is considered. In this way, the final angular distribution of trajectories is obtained by box-counting, which is in excellent agreement with the results calculated by standard S-matrix methods of scattering theory. More interestingly, the accumulation of quantum trajectories at the different diffraction peaks is explained in terms of the corresponding quantum potential. This non-local potential "guides" the trajectories causing a transition from a distribution near the surface, which reproduces its shape, to the final diffraction pattern observed in the asymptotic region, far from the diffracting object. These two regimes are homologous to the Fresnel and Fraunhofer regions described in undulatory optics. Finally, the turning points of the quantum trajectories provide a better description of the surface electronic density than the corresponding classical ones, usually employed for this task.This work was supported by DGES (Spain) under contracts No PB95-71, PB95-425 and PB96-76. A.S. Sanz also acknowledges the Universidad Autónoma de Madrid for a doctoral grant.Peer reviewe

    Computational modelling and experimental tank testing of the multi float WaveSub under regular wave forcing

    Get PDF
    A submerged wave device generates energy from the relative motion of floating bodies. In WaveSub, three floats are joined to a reactor; each connected to a spring and generator. Electricity generated damps the orbital movements of the floats. The forces are non-linear and each float interacts with the others. Tuning to the wave climate is achieved by changing the line lengths, so there is a need to understand the performance trade-offs for a large number of configurations. This requires an efficient, large displacement, multidirectional, multi-body numerical scheme. Results from a 1/25 scale wave basin experiment are described. Here, we show that a time domain linear potential flow formulation (Nemoh, WEC-Sim) can match the tank testing provided that suitably tuned drag coefficients are employed. Inviscid linear potential models can match some wave device experiments; however, additional viscous terms generally provide better accuracy. Scale experiments are also prone to mechanical friction, and we estimate friction terms to improve the correlation further. The resulting error in mean power between numerical and physical models is approximately 10%. Predicted device movement shows a good match. Overall, drag terms in time domain wave energy modelling will improve simulation accuracy in wave renewable energy device design

    Computational modelling and experimental tank testing of the multi float WaveSub under regular wave forcing

    Get PDF
    A submerged wave device generates energy from the relative motion of floating bodies. In 1 WaveSub, three floats are joined to a reactor; each connected to a spring and generator. Electricity generated 2 damps the orbital movements of the floats. The forces are non-linear and each float interacts with the others. 3 Tuning to the wave climate is achieved by changing the line lengths so there is a need to understand the 4 performance trade-offs for a large number of configurations. This requires an efficient, large displacement, 5 multidirectional, multi-body numerical scheme. Results from a 1/25 scale wave basin experiment are described. 6 Here we show that a time domain linear potential flow formulation (Nemoh, WEC-Sim) can match the tank 7 testing provided that suitably tuned drag coefficients are employed. Inviscid linear potential models can match 8 some wave device experiments, however, additional viscous terms generally provide better accuracy. Scale 9 experiments are also prone to mechanical friction and we estimate friction terms to improve the correlation 10 further. The resulting error in mean power between numerical and physical models is approximately 10%. 11 Predicted device movement shows a good match. Overall, drag terms in time domain wave energy modelling 12 will improve simulation accuracy in wave renewable energy device design
    • …
    corecore