114 research outputs found

    Adsorption of Multi-heavy Metals Onto Water Treatment Residuals: Sorption Capacities and Applications

    Get PDF
    Inherently formed iron-based water treatment residuals (WTRs) were tested as alternative sorbents for multi-heavy metal removal from synthetic solutions, contaminated sediments, and surface waters. The WTRs were mainly composed of iron (hydr)oxides and had a high BET surface area (170.7 m2/g), due to the presence of micro- and mesopores. The sorption capacity of WTRs for As(V), Cd2+, Pb2+ and Zn2+ from synthetic solutions surpassed that of a commercially available goethite by 100-400% for single contaminant tests, and by 240% for total sorption in multi contaminant tests. The maximum sorption capacity of WTRs towards As(V), Pb2+ and Zn2+ was estimated by Langmuir equation fitting to range between 0.5 to 0.6 mmol/g, and their maximum sorption capacity for Cd was 0.19 mmol/g. WTRs performed significantly better than goethite for adsorption of cationic contaminants (Cd, Co, Ni, Pb, Zn) in the sediment tests, independent of the dosage or sediment sample. At the highest WTRs dosage (250 mg/g), concentrations of the cationic contaminants decreased by at least 80%, while approximately 40% removal was obtained with 50 mg/g dosage. Sorbent mixtures composed of WTRs with goethite, and with a clinoptilolite natural zeolite were used to reduce As leaching. The sorbent mixtures delivered the desired performance, with the natural zeolite performing better than the goethite as an amendment to WTRs. In addition, up to 90% removal of surface water contaminants was achieved with both fresh WTRs and the WTRs regenerated using 0.01 M EDTA

    Strategic Selection of an Optimal Sorbent Mixture for In-Situ Remediation of Heavy Metal Contaminated Sediments: Framework and Case Study

    Get PDF
    Aquatic sediments contaminated with heavy metals originating from mining and metallurgical activities of aquatic sediments poses significant risk to the environment and human health due to the fact that these sediments not only act as a sink for heavy metals, but can also constitute a secondary source of heavy metal contamination. A variety of sorbent materials has demonstrated the potential to immobilize heavy metals. However, the complexity of multi-element contamination makes choosing the appropriate sorbent mixture and application dosage highly challenging. In this paper, a strategic framework is designed to systematically address the development of an in-situ sediment remediation solution through Assessment, Feasibility and Performance studies. The decision making tools and the experimental procedures needed to identify the optimum sorbent mixtures are detailed. Particular emphasis is given to the utilization and combination of commercially available, and waste-derived sorbents to enhance the sustainability of the solution. A specific case study for a contaminated sediment site in Northern Belgium with high levels of As, Cd, Pb and Zn originating from metallurgical activities is presented. The proposed framework is utilized to achieve the required remediation targets and to meet the imposed regulations on material application in natural environments
    corecore