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Abstract—Neural networks are often selected as tool for
software effort prediction because of their capability to approxi-
mate any continuous function with arbitrary accuracy. A major
drawback of neural networks is the complex mapping between
inputs and output, which is not easily understood by a user.
This paper describes a rule extraction technique that derives
a set of comprehensible IF-THEN rules from a trained neural
network applied to the domain of software effort prediction. The
suitability of this technique is tested on the ISBSG R11 data
set by a comparison with linear regression, radial basis function
networks, and CART. It is found that the most accurate results

are obtained by CART, though the large number of rules limits
comprehensibility. Considering comprehensible models only, the
concise set of extracted rules outperform the pruned CART
tree, making neural network rule extraction the most suitable
technique for software effort prediction when comprehensibility
is important.

Index Terms—Data mining, Software effort prediction, Rule
extraction

I. INTRODUCTION

Resource planning is considered a key issue in business

environments. In the context of a software developing com-

pany, the different resources are amongst others computers,

workspace, and personnel. In recent years, computing power

has become a less important resource for software develop-

ing companies as computing power doubles nearly every 18

months. The personnel costs are often a considerable expense

in the budget of software developing companies. Hence, proper

planning of personnel effort is a key aspect for companies.

There is a growing interest in the literature involving software

effort prediction [1]. In this field of research, the effort needed

to develop a new project is estimated based on historical data

from previous projects. This information can be used by the

management to improve the planning of personnel, to make

more accurate tendering bids, and to evaluate risk factors.

The first attempts to estimate software development effort

date back to the late 60’s [2]. In these cases, expert judgement

in which a domain expert applies his/her prior experience

to estimate the effort was utilized. Since then, a myriad of

estimation techniques have been applied to software effort

prediction. Typically, a distinction between formal models

and data mining approaches is made. Formal models rely

upon a preset formula, often relating only project size to

development effort. A limited set of other attributes are used as

(less important) markup factors. For example, the COnstructive

COst MOdel (COCOMO) I intermediate model relates project

size to development effort, and 15 markup factors, taking the

following form:

Effort = a × sizeb ×





15
∏

j=1

EM
aj

j



 (1)

where EM1, . . . , EM15 are effort multipliers which are used

to take specific properties of a project into account. Size is

expressed in SLOC (Source Lines Of Code) or an equivalent

measure, and a, b, and aj are calibration coefficients, estimated

using statistical techniques such as regression or taken from

the literature [3]. Other well known formal models include

the Software LIfe cycle Model (SLIM) [4] and Function Point

Analysis (FPA) [5].

While the formulaic underpinning of these models allows

for an (somewhat limited) analysis of the estimates, the use

of formal models has a number of drawbacks, including the

limited set of allowed inputs and the somewhat subjective

nature of these models. More recent, formal models have been

superseded by a number of techniques originating from the

data mining literature [1]. Common data mining approaches

include techniques like regression, CART, neural networks,

radial basis function networks, and others [6]. Some of these

techniques, such as neural networks, can be considered to

be black boxes as the relation between inputs and output is

non linear, thus limiting the comprehensibility to the end user

[7, 8]. Due to this lack of comprehensibility, the applicability

of neural networks in a business setting is limited.

Data sets in the field of software engineering tend to be

difficult to collect due to the nature of the data [9]. A number

Table I provides a non exhaustive overview of data sets

frequently used in the software effort prediction literature. For

most data mining techniques, data sets with a sufficient number

of observations are preferred to allow for better generalization
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TABLE I
OVERVIEW OF SOFTWARE EFFORT PREDICTION DATA SETS USED IN

PREVIOUS RESEARCH

Data set Number of projects Number of features Public 1

Kemerer [16] 15 projects 3 features X

DPS database 24 projects 5 features
Rao et al. [17] 36 projects 14 features
Cocomo81 [3] 63 projects 16 features X

Desharnais [18] 81 projects 11 features X

ISBSG R11 5052 projects 38 features

on previously unseen samples. From this overview, it can be

concluded that the ISBSG R11 data set is one of the largest

data sets available for software effort prediction.

The contribution of this paper lies in the application of a

novel technique for regression rule extraction from neural net-

works (NNs) in the domain of software effort prediction. The

application of rule extraction to NNs results in a set of com-

prehensible IF-THEN rules that relate inputs to output (e.g.

predicted effort). This allows to combine the strong elements

of NNs such as the ability to capture non linearities in the data

with the comprehensibility of a set of IF-THEN rules. The

NN rule extraction algorithm is compared to Ordinary Least

Squares (OLS) regression, Radial Basis Function Networks

(RBFN), and Classification And Regression Trees (CART) to

assess applicability and performance of this technique in the

field of software effort prediction.

NNs have been extensively investigated for software effort

prediction (e.g. see [10, 11, 12, 13, 14]), while the application

of rule extraction is less extensively investigated in this con-

text. Currently, we are only aware of a study by Idri et al., in

which a fuzzy rule extraction algorithm was used resulting in

a difficult to understand rule set [15].

The remainder of this paper is structured as follows. Sec-

tion II provides an overview of previous studies that applied

NNs. Section III explains the different techniques used in this

study. In Section IV, background information concerning the

data set and the methodology of our study is given. Section V

discusses the results, and the paper is concluded in Section VI.

II. RELATED RESEARCH

Neural networks (NNs) are mathematical representations

inspired by the functioning of the human brain [19], and have

previously been applied in various contexts, including software

effort prediction, as they enjoy some beneficial properties.

• NNs have previously been applied with success on data

sets with complex relationships between inputs and out-

put, and where the input data is characterized by high

noise levels [20].

• NNs with one hidden layers have been proven to be

universal approximators which can approximate any con-

tinuous function to a desired degree of accuracy [21].

Feedforward neural networks are most commonly used; i.e.

networks containing no recursive loops. A number of previous

studies assessed the applicability of NNs in software effort

1Public data sets can be found at the Promise Repository:
http://promisedata.org

prediction. To learn the underlying relationships within the

data, NNs need sufficient observations. Table I provides the

number of observations of the data sets discussed in the

following paragraphs. For instance, Srinivasan et al. compared

CART and NNs using a combination of the COCOMO81

and the Kemerer data set. It was found that the data mining

techniques performed similarly to formal model approaches

[10].

Finnie et al., while comparing NNs, regression, and case

based reasoning on the ASMA data set 2, found that NNs

were capable of effectively predicting software effort, but at

the expense of reduced comprehensibility [11].

This was confirmed by Wittig et al. who assessed NNs

using the Desharnais data set and an artificially generated

data set. NNs were found to outperform regression and case

based reasoning thus NNs were considered to be a promising

technique in a software effort prediction context [12].

Heiat assessed two different types of NNs, multilayered per-

ceptron and radial basis function networks, and compared it to

linear regression using the DPS database and the Kemerer data

set. It was concluded that the NN approach was competitive

to the regression approach [13].

More recently, a study by Shukla et al. also confirmed these

results analyzing the Rao data set, stating that NNs can be used

for software effort prediction [14].

It can be concluded from previous research that NNs can be

applied with success to software effort prediction. However,

as the mapping from inputs to output in a neural network is

unclear to the end user, the resulting model can be considered

to be a black box. However, comprehensibility is of key

importance as the predictive model needs to be validated

before it is put in use in a business context [22, 23, 24].

Well documented, formal models like COCOMO and FPA

are often the preferred choice in businesses for this reason.

Also techniques from which a rule set can be derived, such as

CART, are often used.

A number of rule extraction techniques exists that derive

a comprehensible rule set from a NN. The majority of these

rule induction techniques are however only applicable in the

context of classification problems (i.e. with a discrete class

variable) [25]. In case of a continuous target attribute such

as development effort, one possibility is to discretize the

target using equal width, equal binning or clustering, and

successively apply a rule extraction technique. This idea is

used for instance in the RECLA system [26]. In this paper, an

alternative approach is proposed by generating linear regres-

sion rules from a trained neural network for software effort

prediction, thus not requiring discretisation.

III. TECHNIQUES

In this section, the algorithm for regression rule extraction

from NNs is described. First however, an introduction to

CART, OLS, RBFN, and NNs is provided.

2The ASMA data set is now know as the ISBSG data set which is also
used in this study
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The following notation is used throughout the remainder of

the paper. A scalar x ∈ R is denoted in normal script while

a vector x ∈ R
n is in boldface script. A vector is always

a column vector unless indicated otherwise. A row vector is

indicated as the transposed of the associated column vector,

x
′. A matrix X ∈ R

N×n is in bold capital notation. xi(j)
is an element of matrix X representing the value of the jth

variable on the ith observation. N is used as the number of

observations in a data set while n represents the number of

variables.

In the ISBSG data set, the target variable used is effort

in man-hours. The actual effort of the ith software project is

indicated as ei while the predicted effort is indicated as êi.

A. OLS regression

Ordinary Least Squares (OLS) regression is arguably one

of the oldest and most widely applied techniques for software

effort prediction. In case of this well documented technique,

the goal is to fit a linear regression function to a data set

containing a dependent, ei, and multiple explanatory variables,

xi(1) to xi(n). OLS regression assumes the following linear

model of the data:

ei = x
′
iβ + ǫi (2)

where x
′
i represents the row vector containing the values of

the ith observation, xi(1) to xi(n), and ǫi the error associated

with each observation. β is the column vector containing the

regression parameters that are to be estimated by minimizing

the squared error, thus obtaining the following estimate for β:

β̂ = (X′
X)−1(X′

e) (3)

with e representing the column vector containing the effort and

X a N × n matrix with the associated explanatory variables.

B. CART

CART (Classification And Regression Tree) [27] is an

algorithm that takes the well known idea of decision trees

for classification, and adjusts it to a regression context by re-

cursively splitting the data using e.g. a least squared deviation

criterion:

min

[

∑

i∈L

(ei − eL)2 +
∑

i∈R

(ei − eR)2
]

(4)

The stopping criterion is set as a minimum of 10 observations

at the terminal nodes. Fig. 1 presents a binary regression tree

constructed by applying CART to the ISBSG R11 data set.

The good comprehensibility of regression trees can be

considered a strong point of this technique. To determine the

effort needed for a new project, it is sufficient to select the

appropriate branches based on the characteristics of the new

project. It is possible to construct an equivalent rule set based

on the obtained regression tree (Fig. 1, bottom).

Fig. 1. Pruned CART tree induced on the ISBSG R11 data set

C. Radial basis function networks

Radial Basis Function Networks (RBFN) are a special

case of neural networks, rooted in the idea of biological

receptive fields [28]. A RBFN is a three-layer feedforward

network consisting of an input layer, a hidden layer typically

containing multiple neurons, and a linear output layer. Due to

the continuous target, a special type of RBFN is used, called

Generalized Regression Neural Networks [29]. The output of

the hidden units is calculated by a radial symmetric gaussian

transfer function, radbas(xi):

radbas(xi) = e−||ck−xi||×b2 (5)

where ck is the kth cluster centroid, ||.|| the Euclidian distance

between two points, and b a bias term. Hence, each ith neuron

has its own receptive field in the input domain: a region

centered on ck with size proportional to the bias term, b. The

final effort estimates are obtained by multiplying the output

of the hidden units with the vector consisting of the targets

associated with the cluster centroids ck, and then inputting this

result into a linear transfer function.

D. Neural networks

Another type of neural networks often considered in the

field of software effort prediction are multilayer perceptron

(MLP) networks. Again, a MLP network is typically a three-

layer feedforward network with each layer consisting of sev-

eral neurons. With the inputs of each of the neurons, a weight

is associated. Assume wm is the vector of weights associated

with the inputs of the mth hidden unit and vm is the scalar

representing the weight associated with the output of the mth

hidden unit.

A hyperbolic tangent transfer function, tanh(.), is adopted in

the hidden nodes such that the final effort estimation is given
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by the following equation:

êi =

H
∑

m=1

tanh(x′
iwm)vm + τ (6)

where τ is the output bias term. Once the network has been

trained, irrelevant and redundant hidden units and input units

are removed from the network by applying the N2PFA (Neural

Network Pruning for Function Approximation) algorithm [30].

E. Regression rule extraction

A set of regression rules can be induced from the trained

NN by applying REFANN (Rule Extraction from Function

Approximating Neural Networks) [31, 32]. This technique

uses a piece-wise linear approximation, L(ξ), of the hyperbolic

tangent activation function, tanh(ξ), consisting of three line

segments, Fig. 2.

The 3-piece linear approximation, L(ξ), is obtained by

minimizing the sum of the squared deviations:

min
ξ0,β0,β1

K
∑

i=1

(tanh(ξi) − L(ξi))
2
, (7)

where ξi = x
′
iw, the weighted input of sample i, i =

1, 2, . . . , N and

L(ξ) =







−α1 + β1ξ if ξ < −ξ0

β0ξ if − ξ0 ≤ ξ ≤ ξ0

α1 + β1ξ if ξ > ξ0

As tanh(0) = 0, L(0) is also fixed at 0. Due to symmetry of the

tanh(ξ) function, the slope of the first and third line segment

are equal, and the intercept between the first (third) and the

middle line segment is −ξ0 (ξ0).

A set of comprehensible IF-THEN regression rules can be

extracted as the hyperbolic tangent transfer function for each

hidden neuron m = 1 . . .H is approximated by a 3-piece

linear function. The procedure for rule extraction is as follows.

• The input space is divided into 3H subregions by using

the pair of intercepts (ξ0 and −ξ0) from the function

Lm(ξ).
• For each non-empty subregion, a rule is generated as

follows:

1) Define a linear equation that approximates the net-

work’s output for input sample i in this subregion

as the consequence of the rule:

êi =

H
∑

m=1

vmLm(ξmi) + τ

ξmi = x
′
iwm

2) Generate the rule condition: (C1 and C2 and · · · CH ),

where Cm is either ξmi < −ξm0, −ξm0 ≤ ξmi ≤
ξm0, or ξmi > ξm0.

Thus, a rule set which is equivalent to the pruned NN with 3-

piece linear approximation, can be represented in the following

form:

ξm1, ξm2 . . . ξmH ∈ R, the intercepts of the 3-piece linear

approximation of the H hidden neurons which determine the

regions.

Rule 1: IF Region 1 THEN êi = E1

Rule 2: IF Region 2 THEN êi = E2

. . .

Rule P: IF Region P THEN êi = EP

with P the number of non empty regions and

E1 =
∑H

m=1
vmLm(x′

iwm) + τ

E2 =
∑H

m=1
vmLm(x′

iwm) + τ

. . .

EP =
∑H

m=1
vmLm(x′

iwm) + τ

with xi the input samples that lies within the associated region.

IV. EMPIRICAL SETUP

In this section, background information concerning the used

data set is given, and the data preprocessing steps are detailed.

The setup of the study and the different evaluation criteria to

assess the techniques are also discussed.

A. Data set

The International Software Benchmarking Standards Group

(ISBSG) is a not-for-profit organization that maintains a large

data set of software project data 3. This data set is often used

by researchers (e.g. see [33, 34, 35, 36]). In this study, ISBSG

R11 (May 2009) is used, containing 5052 projects collected

from companies worldwide; Fig. 3 gives a breakdown of the

origin of the projects. The data relates to projects collected

from 1992 until 2009.

Fig. 3. Breakdown of the origin of the projects in the ISBSG data set

For this study, 721 projects were selected according to the

following criteria.

• Only projects with an overall data quality of A or B, and

a function point quality of A were selected.

• The function points needed to be counted by the IFPUG

4 standard 4.

• Projects with missing values for team size, function point

count or effort were discarded.

3www.isbsg.org
4www.ifpug.org/publications/manual.htm
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Fig. 2. The 3-piece linear approximation of the hidden unit activation function tanh(ξ) given 30 training samples (⋄).

TABLE II
OVERVIEW OF THE SELECTED ATTRIBUTES

Variable name Variable description Type

Effort total effort of the project in man hours cont.
TeamSize number of developers working on the project cont.
FunctionCount size of the project, expressed in function points cont.
ApplType application type (e.g. financial application) cat.
Arch architecture (e.g. client-server) cat.
Database primary database used in the project cat.
DevPlat development platform (e.g. mainframe) cat.
DevType development type (e.g. new development) cat.
LanType language generation cat.
Lan language used for the project cat.
OrgType organization type cat.
Meth methodology used during development cat.

• The total effort recorded must be related only to devel-

opment effort.

Table II provides an overview of the parameters included in

the data set. The ISBSG data set contains a large number of

missing values for a number of important attributes. Therefore,

we decided only to include attributes with less then 40 %

missing values. Additionally, no attributes contributing to an

aggregated variable are considered. In case of categorical

variables with more than 8 possible values, some of the levels

were merged based on semantic similarity to obtain a more

concise data set. Levels with less than 15 observations, were

put in a category named ‘Other’, in line with a study done by

Jeffrey et al. [36]. The categorical variables were transformed

into binary variables by applying dummy encoding as the

categorical attributes are nominal by nature [37]. A missing

value flag was created to account for missing data. No outlier

removal or other preprocessing steps were applied.

B. Study setup

To obtain a fair estimation of performance of the various

techniques, the data is randomly split into a training and a test

set containing 649 projects and 72 projects respectively. The

models are induced on the training data set, and afterwards

evaluated using the previously unseen data from the test set.

The results obtained on this independent test set are tested

using a one way ANOVA (ANalysis Of VAriance). This

statistical technique assesses the question whether the means

across multiple groups are different by taking the variances of

the groups into account, hence its name. The results are tested

at statistical significance level α = 0.01. Following the ANOVA

test, Tukey’s honest significance test is utilized to perform a

pairwise comparison of the techniques in order to investigate

whether the differences between two specific techniques are

statistically significant. A statistical significance level of α =

0.05 is used for this second test.

C. Evaluation metrics

A key question of any estimation method is whether the

predictions are accurate; the difference between the actual

effort, ei, and the predicted effort, êi, should be as small

as possible. Two of the most commonly used criteria in the

context of software effort prediction are MMRE and Pred25.

Both are derived from the Magnitude of Relative Error (MRE)

[38]. The MRE is calculated for each observation and is

defined as:

MREi =
|ei − êi|

ei

(8)

The MMRE (Mean MRE) is then defined as:

MMRE =
100

N

N
∑

i=1

|ei − êi|

ei

(9)

A complementary accuracy measure is Predk [38], the fraction

of observations for which the predicted effort, êi, falls within
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k% of the actual effort, ei:

Predk =
100

N

N
∑

i=1

{

1 if MREi ≤
k

100

0 otherwise
(10)

Typically, the Pred25 measure is considered, looking at the

percentage of predictions that fall within 25% of the actuals.

While both measures are based on the MRE, they have a

slightly different focus; Predk is favoring models which are

generally accurate but occasionally widely inaccurate. MMRE

on the other hand can be highly affected by outliers [39]. To

address this shortcoming in the MMRE measure, the MdMRE

is also considered. The MdMRE is the median of all MREs,

and thus can be considered more robust against outliers.

MdMRE = 100 × median(MRE) (11)

Additionally, models are compared using a rank correlation

measure, which measures the monotonic relationship between

ei and êi. More specifically, the Spearman’s rank correlation rs

coefficient is used, since this non-parametric correlation coef-

ficient does not assume a normal distribution of the underlying

data [40]. The Spearman’s rank correlation takes on a value

between -1 and 1 with 1 (-1) indicating a perfect positive

(negative) monotonic relationship between the actual values

and the predicted values. The Spearman’s rank correlation is

defined as:

rs = 1 −
6

∑N

i=1
d2

i

N(N2 − 1)
(12)

whereby di represents the difference between the ordinal ranks

assigned to each of the variable values. In case of equal ranks,

the average rank is assigned.

V. RESULTS

In a first part of the experiment, the four techniques (OLS,

CART, RBFN, and Rule set) are compared in terms of MMRE,

MdMRE, Pred25, and rs. The results of the experiments are

displayed in Table III. It can be seen that CART performs

best, while the rule set extracted from the trained NN performs

second best. However, analysis of the CART tree shows that

the resulting tree consists of 47 splitting nodes. Hence, the

induced rule set contains 48 rules with in some cases up to 10

rule antecedents. Therefore, the CART tree can be considered

too elaborate to be easily comprehensible by end users. The

extracted rule set is considerably smaller, only containing 5

rules with at most 2 rule antecedents. The rule set obtained

from the pruned NN is given in Table IV.

TABLE III
RESULTS OF THE DIFFERENT TECHNIQUES ON THE ISBSG R11 DATA SET

Technique Pred25 MMRE MdMRE rs

OLS 22.22 135.03 57.06 0.742
CART 37.50 61.16 39.87 0.871
RBFN 16.67 113.07 64.35 0.343
CART Pruned 16.67 186.45 77.05 0.452
Rule set 30.56 95.39 57.25 0.813

OLS CART RBFN CART pruned Rule set
0
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Fig. 4. Box plot of MRE for the different techniques

In a second part of the experiment, the CART tree is further

pruned in order to obtain the same complexity of rule set (the

same number of rules and rule antecedents) as the rule set

extracted from the pruned NN. The results are indicated in

Table III as ‘CART pruned’, and the CART tree as well as

the induced rule set are shown in Fig. 1. The results indicate

that the rule set performs better than the pruned CART tree in

terms of MMRE, MdMRE, Pred25, and rs. Fig. 4 shows box

plots of the MRE for the five techniques. In each box plot,

the central line indicates the median MRE (MdMRE), while

the edges of the box represent for each technique the 25th and

the 75th percentiles. The whiskers extend to the most extreme

MRE values that are not considered to be outliers. Outliers

finally are represented by crosses.

To further assess the statistical significance of the results, a

one way ANOVA analysis is performed to test whether the

MMRE is significantly different across the five techniques

(OLS, CART, CART pruned, RBFN, and Rule set). The null

hypothesis is the following:

H0 : MMRECART = MMREOLS = MMRECARTpruned =

MMRERBFN = MMRERuleset

The results of the ANOVA analysis are given in Table V.

The test is significant at 1 % (p < 0.001) indicating that

the MMRE across the five techniques is statistically different.

Following the ANOVA, a Tukey’s honest significance test is

performed. The null hypothesis is given below:

H0 : MMREk = MMREl with k 6= l

The results of this test are displayed in Table VI. The

significant pairwise differences are given in boldface font

(critical value = 0.775).

It can be concluded from these tests that the extracted

regression rules are significantly better performing than the

pruned CART tree. The CART tree without additional pruning

is the best performing technique at the expense of a larger and

thus less comprehensible rule set, although this result is only

statistically significant when compared to the pruned CART

tree. When CART is compared with OLS, the result is very

close to the critical value (0.7388 as compared to the critical

value = 0.775).
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TABLE IV
RULE SET EXTRACTED FROM NEURAL NETWORK

Equivalent rule set

Rule 1 IF Region 1 AND DevType = Enhan THEN
496.98 + 1.74 × FunctionCount + 428.32 × TeamSize

Rule 2 IF Region 1 AND DevType 6= Enhan THEN
-776.42 + 1.74 × FunctionCount + 428.32 × TeamSize

Rule 3 IF Region 2 THEN
-15705.45 + 10.59 × FunctionCount + 778.27 × TeamSize

Rule 4 IF Region 3 THEN
5859.29 + 9.02 × FunctionCount + 365.39 × TeamSize

Rule 5 IF Region 4 THEN
55637.90 + 0.16 × FunctionCount + 15.50 × TeamSize

Intercepts of the hidden neurons, ξmi

ξ10 = 92.63
ξ20 = 140.18
Region demarcation

Region 1 x
′

i
w1 ≤ ξ10 AND x

′

i
w2 ≤ −ξ20

Region 2 x
′

i
w1 ≤ ξ10 AND x

′

i
w2 ≤ ξ20

Region 3 x
′

i
w1 ≥ ξ10 AND x

′

i
w2 ≤ ξ20

Region 4 x
′

i
w1 ≥ ξ10 AND x

′

i
w2 ≥ −ξ20

TABLE V
ONE WAY ANOVA ANALYSIS RESULTS

Source of Variation DF Type III SS

Between Groups 4 62.7
Within Groups 355 849.3

F value F valuecritical p value

5.4157 3.3724 0.0003

VI. CONCLUSIONS

Neural network based approaches are often considered to

be less suitable in a business environment due to a lack

of comprehensibility. Instead, techniques such as CART are

adopted to induce a set of understandable rules.

This experimental study assessed the feasibility of regres-

sion rule extraction from neural networks in the context of

software effort prediction. The algorithm generates a small

number of linear equations from a neural network trained

for regression by approximating each hidden unit activation

function by a 3-piece linear function. The best performing

technique was found to be CART, although it did not statis-

tically outperform the extracted rule set and other techniques.

However, due to the size of the CART tree, the obtained

decision model lacks comprehensibility. The extracted rule

set was found to provide a more concise rule set to the end

user while still attaining high performance. Further pruning

the CART tree yields a statistical significantly less accurate

model as compared to the extracted rule set. Therefore, we

consider the idea of regression rule extraction highly relevant

to the practical implementation of software effort prediction

systems in a business environment where comprehensibility is

important.

Further research on other software effort data sets is needed

to assess this technique more in depth. Also other types of rule

extraction algorithms are currently investigated by the authors.
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TABLE VI
TUKEY’S HONEST SIGNIFICANCE TEST RESULTS

OLS CART RBFN CART
Pruned

Rule set

OLS 0.7388 0.2196 0.5142 0.3964
CART 0.7388 0.5192 1.2530 0.3423
RBFN 0.2196 0.5192 0.7338 0.1768
CART Pruned 0.5142 1.2530 0.7338 0.9106
Rule set 0.3964 0.3423 0.1768 0.9106
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