13 research outputs found

    Transcriptomic and metabolomic shifts in rice roots in response to Cr (VI) stress

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Widespread use of chromium (Cr) contaminated fields due to careless and inappropriate management practices of effluent discharge, mostly from industries related to metallurgy, electroplating, production of paints and pigments, tanning, and wood preservation elevates its concentration in surface soil and eventually into rice plants and grains. In spite of many previous studies having been conducted on the effects of chromium stress, the precise molecular mechanisms related to both the effects of chromium phytotoxicity, the defense reactions of plants against chromium exposure as well as translocation and accumulation in rice remain poorly understood.</p> <p>Results</p> <p>Detailed analysis of genome-wide transcriptome profiling in rice root is reported here, following Cr-plant interaction. Such studies are important for the identification of genes responsible for tolerance, accumulation and defense response in plants with respect to Cr stress. Rice root metabolome analysis was also carried out to relate differential transcriptome data to biological processes affected by Cr (VI) stress in rice. To check whether the Cr-specific motifs were indeed significantly over represented in the promoter regions of Cr-responsive genes, occurrence of these motifs in whole genome sequence was carried out. In the background of whole genome, the lift value for these 14 and 13 motifs was significantly high in the test dataset. Though no functional role has been assigned to any of the motifs, but all of these are present as promoter motifs in the Database of orthologus promoters.</p> <p>Conclusion</p> <p>These findings clearly suggest that a complex network of regulatory pathways modulates Cr-response of rice. The integrated matrix of both transcriptome and metabolome data after suitable normalization and initial calculations provided us a visual picture of the correlations between components. Predominance of different motifs in the subsets of genes suggests the involvement of motif-specific transcription modulating proteins in Cr stress response of rice.</p

    Target protection as a key antibiotic resistance mechanism

    Get PDF
    Antibiotic resistance is mediated through several distinct mechanisms, most of which are relatively well understood and the clinical importance of which has long been recognized. Until very recently, neither of these statements was readily applicable to the class of resistance mechanism known as target protection, a phenomenon whereby a resistance protein physically associates with an antibiotic target to rescue it from antibiotic-mediated inhibition. In this Review, we summarize recent progress in understanding the nature and importance of target protection. In particular, we describe the molecular basis of the known target protection systems, emphasizing that target protection does not involve a single, uniform mechanism but is instead brought about in several mechanistically distinct ways

    Enviromental Bioremediation Technologies

    No full text
    xx,518 hal,;ill,;25c

    The Journey of Arsenic from Soil to Grain in Rice

    No full text
    Arsenic (As) is a non-essential toxic metalloid whose elevated concentration in rice grains is a serious issue both for rice yield and quality, and for human health. The rice-As interactions, hence, have been studied extensively in past few decades. A deep understanding of factors influencing As uptake and transport from soil to grains can be helpful to tackle this issue so as to minimize grain As levels. As uptake at the root surface by rice plants depends on factors like iron plaque and radial oxygen loss. There is involvement of a number of transporters viz., phosphate transporters and aquaglyceroporins in the uptake and transport of different As species and in the movement to subcellular compartments. These processes are also affected by sulfur availability and consequently on the level of thiol (-SH)-containing As binding peptides viz., glutathione (GSH) and phytochelatins (PCs). Further, the role of phloem in As movement to the grains is also suggested. This review presents a detailed map of journey of As from soil to the grains. The implications for the utilization of available knowledge in minimizing As in rice grains are presented

    Arsenic hazards: strategies for tolerance and remediation by plants

    No full text
    Arsenic toxicity has become a global concern owing to the ever-increasing contamination of water, soil and crops in many regions of the world. To limit the detrimental impact of arsenic compounds, efficient strategies such as phytoremediation are required. Suitable plants include arsenic hyperaccumulating ferns and aquatic plants that are capable of completing their life cycle in the presence of high levels of arsenic through the concerted action of arsenate reduction to arsenite, arsenite complexation, and vacuolar compartmentalization of complexed or inorganic arsenic. Tolerance can also be conferred by lowering arsenic uptake by suppression of phosphate transport activity, a major pathway for arsenate entry. In many unicellular organisms, arsenic tolerance is based on the active removal of cytosolic arsenite while limiting the uptake of arsenate. Recent molecular studies have revealed many of the gene products involved in these processes, providing the tools to improve crop species and to optimize phytoremediation; however, so far only single genes have been manipulated, which has limited progress. We will discuss recent advances and their potential applications, particularly in the context of multigenic engineering approaches
    corecore