41 research outputs found

    TGA2 signaling in response to reactive electrophile species is not dependent on cysteine modification of TGA2

    Get PDF
    This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Reactive electrophile species (RES), including prostaglandins, phytoprostanes and 12-oxo phytodienoic acid (OPDA), activate detoxification responses in plants and animals. However, the pathways leading to the activation of defense reactions related to abiotic or biotic stress as a function of RES formation, accumulation or treatment are poorly understood in plants. Here, the thiol-modification of proteins, including the RES-activated basic region/leucine zipper transcription factor TGA2, was studied. TGA2 contains a single cysteine residue (Cys186) that was covalently modified by reactive cyclopentenones but not required for induction of detoxification genes in response to OPDA or prostaglandin A1. Activation of the glutathione-S-transferase 6 (GST6) promoter was responsive to cyclopentenones but not to unreactive cyclopentanones, including jasmonic acid suggesting that thiol reactivity of RES is important to activate the TGA2-dependent signaling pathway resulting in GST6 activation We show that RES modify thiols in numerous proteins in vivo, however, thiol reactivity alone appears not to be sufficient for biological activity as demonstrated by the failure of several membrane permeable thiol reactive reagents to activate the GST6 promoter.Peer reviewedFinal Published versio

    The Molecular Identification of Organic Compounds in the Atmosphere: State of the Art and Challenges

    Full text link

    Buchbesprechungen

    No full text

    Secular Trend and Seasonal Variability of the Column Abundance of N2O Above the Jungfraujoch Station Determined from Solar Spectra

    Get PDF
    Infrared solar spectra recorded at the International Scientific Station of the Jungfraujoch (3580 m altitude), Switzerland, in 1950–1951 and from 1984 to 1992 have been analyzed to determine vertical column abundances of nitrous oxide (N2O) above the station. The best fit to the relatively dense set of measurements made between 1984 and 1992 indicates a mean exponential rate of increase equal to 0.36 ± 0.06% yr−1 (1 σ) and a seasonal modulation of 7.2% peak to peak, the minimum occurring at the end of the winter and the maximum in early September. The column abundances for April of the years 1951, 1984, and 1992 were found equal to 3.49 × 1018, 3.76 × 1018, and 3.87 × 1018 molecules cm−2, respectively; they translate into N2O concentrations at the altitude of the Jungfraujoch equal to 275, 296, and 305 parts per billion by volume. These results indicate that the exponential rate of increase for 1951–1984 was equal to 0.23 ± 0.04% yr−1 (1σ), thus substantially lower than for the 1984–1992 time interval and that the so‐called preindustrial levels of N2O pertained until 1951 with most of the increase in atmospheric N2O occurring thereafter

    Ground-Based Infrared Measurements of Carbonyl Sulfide Total Column Abundances: Long - Term Trends and Variability

    Get PDF
    Total vertical column abundances of carbonyl sulfide (OCS) have been derived from time series of high‐resolution infrared solar absorption spectra recorded at the National Solar Observatory McMath solar telescope facility on Kitt Peak (altitude 2.09 km, latitude 31.9°N, longitude 111.6°W), southwest of Tucson, Arizona, and at the International Scientific Station of the Jungfraujoch (altitude 3.58 km, latitude 46.5°N, longitude 8.0°E), in the Swiss Alps. The analysis of both data sets is based on nonlinear least squares spectral fittings of narrow intervals centered on lines of the intense v 3 band of OCS, the P(37) transition at 2045.5788 cm−1 and the P(15) transition at 2055.8609 cm−1, with a consistent set of spectroscopic line parameters. The Kitt Peak measurements, recorded on 30 different days between May 1977 and March 1991, show a 10% peak‐to‐peak seasonal cycle with a summer maximum and a winter minimum and a trend in the total column abundance equal to (0.1 ± 0.2)% yr−l, 2σ. Jungfraujoch solar spectra recorded on 67 different days between October 1984 and April 1991 have been analyzed. The fitted trend in the Jungfraujoch total columns, (−0.1 ± 0.5)% yr−1, 2σ, is consistent with the Kitt Peak trend results within the errors. The Jungfraujoch total columns show a more complex seasonal variation than noted in the Kitt Peak data. The mean of the daily averaged total columns, 8.44 × 1015 molecules cm−2 above Kitt Peak and 6.41 × 1015 molecules cm−2 above the Jungfraujoch station, correspond respectively to mean tropospheric mixing ratios of 0.54 ± 0.04 and 0.52 ± 0.04 parts per billion by volume; these values are consistent with previously reported remote and in situ measurements. Taken together, the results from the two sites indicate that there has been no significant change in the OCS total column abundance at northern mid‐latitudes over the last decade

    Seasonal variability and trends of volatile organic compounds in the lower polar troposphere

    Get PDF
    Measurements of the atmospheric mixing ratios of 10 nonmethane hydrocarbons (NMHC) and four halocarbons (methyl chloride, dichloromethane, trichloroethene, and tetrachloroethene) were conducted between January 1989 and July 1996 at Alert (Canadian Arctic, 82°27′N, 62°31′W). About 270 canister samples were analyzed covering the 7-year period with an average frequency of about one sample every 9 days. The mixing ratios of these volatile organic compounds (VOC) exhibit considerable variability, which can partly be described by systematic seasonal dependencies. The highest mixing ratios were always observed during winter. During spring, the mixing ratios decrease for some compounds to values near the detection limit. The amplitudes of the seasonal variability, the time of the occurrence of the maxima, and the relative steepness of the temporal gradients show a systematic dependence on OH reactivity. The steepest relative decrease is less than 1% d−1 for methyl chloride, increasing to about 4% d−1 for highly reactive VOC. Similarly, the highest relative increase rates vary between 0.5% d−1 for VOC with low reactivity to 4% d−1 for reactive VOC. With the exception of ethyne, toluene, and methyl chloride the concentrations of all measured VOC decrease during the studied period, although this decrease is not always statistically significant. In general, the largest changes were found for the most reactive VOC, although the seemingly random overall variability observed for these compounds results in substantial uncertainties. For the less reactive VOC (ethane, benzene, and propane) the average relative annual decrease rate is in the range of a few percent per year. Dichloromethane and tetrachloroethene showed a decrease of 4 and 14% yr−1, respectively. The average decrease rate for the other alkanes is in the range of some 10% yr−1, indicating a substantial change of emission rates during this period. A likely explanation is a reduction in VOC emissions in the area of the former Soviet Union, most likely Siberia, as a consequence of the recent major economic changes in this region. The measurements were compared with the results of chemical transport models' simulations using the Emission Database for Global Atmospheric Research NMHC emission inventory. Although the model captures most of the main features of the shapes of the seasonal cycles of the NMHC, the results clearly show that model estimates are consistently too low compared to the observations. Most likely this is the consequence of an underestimate of the NMHC emission rates in the emission inventory

    Vertical column abundances and seasonal cycle of acetylene, C2H2, above the Jungfraujoch station, derived from IR solar observations

    Get PDF
    Monthly mean total vertical column abundances of acetylene have been determined from series of infrared solar spectra recorded at the Jungfraujoch station, Switzerland, between June 1986 and April 1991. The data have been obtained by nonlinear least-squares fittings of the 5 band R19 transition of C2H2 at 776.0818 cm-1. The average of 22 monthly mean total vertical columns of C2H2 retrieved during that time interval of almost 5 years was found to be equal to (1.81±0.12)×1015 molec/cm2, which corresponds to an average mixing ratio of (0,22±0.013) ppbv (parts per billion by volume) in a troposphere extending from the altitude of the station (3.58 km), up to 10.5 km. Despite the large variability found from year to year, a least-squares sine fit to the data reveals a seasonal variation with an amplitude of about ±40% of the mean; the maximum occurs during mid-winter and the minimum in the summer. The present results are compared critically with similar in-situ data found in the literature. A sinusoidal fit to all such free troposphere measurements made in-situ between 30°N and 60°N indicates good agreement in shape and phase with the seasonal variation derived above the Jungfraujoch, but their average column abundance, 2.3×1015 molec/cm2, is about 30% higher; this difference is explained on the basis of non-upwelling meteorological conditions generally prevailing during ground-based remote solar observations
    corecore