13,659 research outputs found

    The applicability of MFD thrusters to satellite power systems

    Get PDF
    The high power self field MPD thruster uses electromagnetic forces rather than electrostatic to accelerate a neutral plasma. The most attractive application of MPD thrusters to satellite power systems is in the area of electric propulsion for a cargo orbit transfer vehicle (COTV). Calculations were performed in order to compare the performance of a COTV using an ion or MPD propulsion system. Results show that the MPD propulsion system gives a shorter trip time with the same power and payload when compared to the ion thruster propulsion system at either value of specific impulse. More important than the trip time benefit may be the advantage a MPD propulsion system provides in system simplicity. Another interesting COTV concept using MPD thrusters is the use of a remote power supply located on the Earth, at GEO, or somewhere in between to transmit power to the COTV in a microwave transmission. The specific impulse at thrust levels of tens of newtons makes a MPD propulsion system a candidate for stationkeeping and attitude control of large space structures such as a SPS

    Interpretation methodology and analysis of in-flight lightning data

    Get PDF
    A methodology is presented whereby electromagnetic measurements of inflight lightning stroke data can be understood and extended to other aircraft. Recent measurements made on the NASA F106B aircraft indicate that sophisticated numerical techniques and new developments in corona modeling are required to fully understand the data. Thus the problem is nontrivial and successful interpretation can lead to a significant understanding of the lightning/aircraft interaction event. This is of particular importance because of the problem of lightning induced transient upset of new technology low level microcircuitry which is being used in increasing quantities in modern and future avionics. Inflight lightning data is analyzed and lightning environments incident upon the F106B are determined

    Integrality of Homfly (1,1)-tangle invariants

    Get PDF
    Given an invariant J(K) of a knot K, the corresponding (1,1)-tangle invariant J'(K)=J(K)/J(U) is defined as the quotient of J(K) by its value J(U) on the unknot U. We prove here that J' is always an integer 2-variable Laurent polynomial when J is the Homfly satellite invariant determined by decorating K with any eigenvector of the meridian map in the Homfly skein of the annulus. Specialisation of the 2-variable polynomials for suitable choices of eigenvector shows that the (1,1)-tangle irreducible quantum sl(N) invariants of K are integer 1-variable Laurent polynomials.Comment: 10 pages, including several interspersed figure

    Linear and nonlinear interpretation of the direct strike lightning response of the NASA F106B thunderstorm research aircraft

    Get PDF
    The objective of the work reported here is to develop a methodology by which electromagnetic measurements of inflight lightning strike data can be understood and extended to other aircraft. A linear and time invariant approach based on a combination of Fourier transform and three dimensional finite difference techniques is demonstrated. This approach can obtain the lightning channel current in the absence of the aircraft for given channel characteristic impedance and resistive loading. The model is applied to several measurements from the NASA F106B lightning research program. A non-linear three dimensional finite difference code has also been developed to study the response of the F106B to a lightning leader attachment. This model includes three species air chemistry and fluid continuity equations and can incorporate an experimentally based streamer formulation. Calculated responses are presented for various attachment locations and leader parameters. The results are compared qualitatively with measured inflight data

    Parton and Hadron Correlations in Jets

    Full text link
    Correlation between shower partons is first studied in high pTp_T jets. Then in the framework of parton recombination the correlation between pions in heavy-ion collisions is investigated. Since thermal partons play very different roles in central and peripheral collisions, it is found that the correlation functions of the produced hadrons behave very differently at different centralities, especially at intermediate pTp_T. The correlation function that can best exhibit the distinctive features is suggested. There is not a great deal of overlap between what we can calculate and what has been measured. Nevertheless, some aspects of our results compare favorably with experimental data.Comment: 28 pages in Latex + 13 figures. This is a revised version with extended discussions added without quantitative changes in the result

    Body Fat is Associated with Decreased Endocrine and Cognitive Resilience to Acute Emotional Stress

    Get PDF
    *Objective:* Cortisol is elevated both in individuals with increased emotional stress as well as with higher percentages of body fat. Cortisol is also known to affect cognitive performance, particularly spatial processing, selective attention, and working memory. We hypothesized that increased body fat might therefore be associated with decreased performance on a spatial processing task, in response to an acute real-world stressor. 

*Design:* We tested two separate samples of subjects undergoing their first (tandem) skydive. In the first sample (N=78), subjects were tested for salivary cortisol and state-anxiety (Spielberger State Anxiety Scale) during the plane's fifteen-minute ascent to altitude in immediate anticipation of the jump. In a second sample (N=20), subjects were tested for salivary cortisol, as well as cardiac variables (heart rate, autonomic regulation via heart rate variability) and performance on a cognitive task of spatial processing, selective attention, and working memory. 

*Results:* In response to the skydive, individuals with greater body fat percentages showed significantly increased reactivity for both cortisol (on both samples) and cognition, including decreased accuracy of our task of spatial processing, selective attention, and working memory. These cognitive effects were restricted to the stress response and were not found under baseline conditions. There were no body fat interactions with cardiac changes in response to the stressor, suggesting that the cognitive effects were specifically hormone-mediated rather than secondary to general activation of the autonomic nervous system. 

*Conclusions:* Our results indicate that, under real-world stress, increased body fat may be associated with endocrine stress-vulnerability, with consequences for deleterious cognitive performance

    Loss tolerant linear optical quantum memory by measurement-based quantum computing

    Get PDF
    We give a scheme for loss tolerantly building a linear optical quantum memory which itself is tolerant to qubit loss. We use the encoding recently introduced in Varnava et al 2006 Phys. Rev. Lett. 97 120501, and give a method for efficiently achieving this. The entire approach resides within the 'one-way' model for quantum computing (Raussendorf and Briegel 2001 Phys. Rev. Lett. 86 5188–91; Raussendorf et al 2003 Phys. Rev. A 68 022312). Our results suggest that it is possible to build a loss tolerant quantum memory, such that if the requirement is to keep the data stored over arbitrarily long times then this is possible with only polynomially increasing resources and logarithmically increasing individual photon life-times

    Using Self-Adaptive Evolutionary Algorithms to Evolve Dynamism-Oriented Maps for a Real Time Strategy Game

    Get PDF
    9th International Conference on Large Scale Scientific Computations. The final publication is available at link.springer.comThis work presents a procedural content generation system that uses an evolutionary algorithm in order to generate interesting maps for a real-time strategy game, called Planet Wars. Interestingness is here captured by the dynamism of games (i.e., the extent to which they are action-packed). We consider two different approaches to measure the dynamism of the games resulting from these generated maps, one based on fluctuations in the resources controlled by either player and another one based on their confrontations. Both approaches rely on conducting several games on the map under scrutiny using top artificial intelligence (AI) bots for the game. Statistic gathered during these games are then transferred to a fuzzy system that determines the map's level of dynamism. We use an evolutionary algorithm featuring self-adaptation of mutation parameters and variable-length chromosomes (which means maps of different sizes) to produce increasingly dynamic maps.TIN2011-28627-C04-01, P10-TIC-608
    • …
    corecore