
Using Self-Adaptive Evolutionary Algorithms to
Evolve Dynamism-Oriented Maps for a Real

Time Strategy Game

Raúl Lara-Cabrera, Carlos Cotta and Antonio J. Fernández-Leiva

Department “Lenguajes y Ciencias de la Computación”, ETSI Informática,
University of Málaga, Campus de Teatinos, 29071 Málaga – Spain

{raul,ccottap,afdez}@lcc.uma.es

Abstract. This work presents a procedural content generation system
that uses an evolutionary algorithm in order to generate interesting maps
for a real-time strategy game, called Planet Wars. Interestingness is here
captured by the dynamism of games (i.e., the extent to which they are
action-packed). We consider two different approaches to measure the dy-
namism of the games resulting from these generated maps, one based on
fluctuations in the resources controlled by either player and another one
based on their confrontations. Both approaches rely on conducting sev-
eral games on the map under scrutiny using top artificial intelligence (AI)
bots for the game. Statistic gathered during these games are then trans-
ferred to a fuzzy system that determines the map’s level of dynamism.
We use an evolutionary algorithm featuring self-adaptation of mutation
parameters and variable-length chromosomes (which means maps of dif-
ferent sizes) to produce increasingly dynamic maps.

1 Introduction

Videogames, with a total consumer spent of 24.75 billion US dollars in 2011 [1], is
a very important pillar of the entertainment industry. Until the last decade, the
graphical quality of a game determined its quality but, since then, the attractive-
ness of video-games has fallen on additional features, such as music, interesting
stories and the player immersion into the game. It is difficult to measure how
much fun a game is since it depends on each player; however it is related to the
player satisfaction: the higher the satisfaction, the higher the fun.

This high satisfaction can be achieved via the automated adaptation of the
game in response to the player’s needs [7] using computational intelligence (CI)
techniques. Traditionally, CI has been applied to generate strategies that define
the behaviour of the non-player characters (NPC), but it can be also applied
to many other aspects of game development such as computational narratives,
player modelling, learning in games, intelligent camera control, and procedure
content generation (PCG), among other – see [6].

PCG involves algorithms and techniques devoted to create game content
automatically, providing several advantages to game developers, such as reduced

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Institucional Universidad de Málaga

https://core.ac.uk/display/62897586?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


memory consumption, the possibility of create endless video-games (i.e. the game
changes every time a new game is started) and a reduction in the expense of
creating the game content. This work focuses in PCG in the context of the real-
time strategy (RTS) game Planet Wars by means of evolutionary algorithms
(EAs).

Planet Wars is a real-time strategy game based on Galcon and used in the
Google AI Challenge 2010. The objective is to conquer all the planets on the
map or eliminate every opponent. Every game takes place on a map on which
several planets are scattered. These planets are able to host ships and they
can be controlled by any player or remain neutral if no player conquer them.
Moreover, planets have different sizes, a property that defines their growth rate
(i.e., the number of new ships created every time step, as long as the planet
belongs to some player). Players send fleets of ships from controlled planets to
other ones. If the player owns the target planet the number of fleet’s ships is
added to the number of ships on that planet, otherwise a battle takes place in
the target planet: ships of both sides destroy each other so the player with the
highest number of ships owns the planet (with a number of ships determined by
the difference between the initial number of ships). The distance between the
planets affects the required time for a fleet to arrive to her destination, which is
fixed during the flight (i.e., it is not possible to redirect a fleet while it is flying).

PCG for Planet Wars involves in this case generating the maps on which
the game takes place. The particular structure of these maps can lead to games
exhibiting specific features. In previous work [3,4] we focused on achieving bal-
anced games, i.e., games in which none of the players strongly dominates her
opponent. Such balanced games can be of little interest though, due to the lack
of action. For this reason, we turn our attention to the evolution of maps re-
sulting in interesting, action-packed games. We use the label dynamism to refer
to this property of games. Next section is devoted to analyse the evolution of
dynamism-oriented games.

2 Evolution of Maps with Dynamism

To study the evolution of Planet Wars maps leading to dynamic games, let us
firstly analyse how to capture dynamism within an objective function. Subse-
quently, we focus on an evolutionary approach optimizing this objective function.

2.1 Capturing Dynamism

In order to evaluate the dynamism of the generated maps we had to specify which
are the characteristics that define a dynamic game. To do so, we consider two
groups of indicators. The first group reflects dynamism from a resource-based
perspective (i.e., we try to relate dynamism with the variation in the amount of
resources owned by either player); the second group focuses on confrontations
between the players (i.e., dynamism is tried to be captured by the extent to
which the players repeatedly clash). More precisely, the indicators for a game i
are the following:



– Resource-based:
• Game length Ti: this is the ratio of the maximum number of turns allowed
τmax that have been played in the current game: Ti = τi/τmax.

• Conquering rate Ki: this is the ratio of planets which are not neutral at
the end of the game.

• Reconquering rate Zi: Let ζij be the number of planets that were owned
by a player in turn j − 1 and conquered by the other player in turn j.
Then Zi = 1

τi

∑τi
j=1 ζij/np, where np is the total number of planets.

• Peak difference: this is a family of variables measuring the maximal am-
plitude of the variation in any of the resources accounted for, namely

planets (π), growth capacity (γ), and ships (ξ). Let φ
(a)
ij be the amount

of resource φ owned by player a in the j-th turn of the i-th game, we
record the two points in which the relative difference is best for one player

and the other one and sum both quantities, i.e., ∆φ
i = max16j6τi{(φ

(1)
ij −

φ
(2)
ij )/(φ

(1)
ij + φ

(2)
ij )} −min16j6τi{(φ

(1)
ij − φ

(2)
ij )/(φ

(1)
ij + φ

(2)
ij )}

– Confrontation-based:
• Battle rate: Bi this is the ratio of planets under attack throughout the

game. Let βij be the number of planets that were under attack during
the j-th turn, then Bi = 1

τi

∑τi
j=1 βij/np.

• Destroyed ships Si: this is the ratio of the generated ships that have been
destroyed throughout the game. Let χi be the number of destroyed ships
and ψi the number of created ships, then Si = χi/ψi.

Since we use a tournament system whereby a number of bots are paired
and compete on the map under evaluation, the consider the average value of the
above indicators across the Ng total games. We drop the sub-index to denote this
average quantity. Subsequently, we have defined a set of fuzzy rules to express
dynamism as a function of these indicators. The fuzzy rule base is depicted in
Fig. 1. In general the underlying fuzzy sets (LO and HI) are defined so as to hit
a maximum at the corresponding end of the value range of the variable under
consideration, and decrease linearly towards the other end. The exceptions are
Z and B whose usual values are far from the theoretical maximal value 1.0. In
this case, we saturate the HI value to 1 when they reach the value 0.1 and 0.35
respectively (these values were empirically determined). For the output variable
dyn a middle triangular fuzzy set MED is defined, hitting a maximum at 0.5
and linearly decreasing towards both ends. In this case, both HI and LO reach
their minimum at this 0.5 value.

2.2 Evolutionary Approach

We have used a self-adaptive evolutionary approach in order to optimize the
dynamism of the generated maps. These maps have been encoded in mixed real-
integer vectors which define the characteristics of the planets (i.e. position, size
and number of ships) in a way that each gene represents a planet. The mutation
operator depends on the parameter’s type: Gaussian mutation for the real-valued
parameters and a method that generates suitable integer mutations [5,8] for the



Resource-based:
1. if K is hi and Z is hi then dyn is hi
2. if ∆π is hi and ∆γ is hi and ∆ξ is hi then dyn is hi
3. if ∆π is hi and (∆γ is lo or ∆ξ is lo) then dyn is med
4. if ∆γ is hi and (∆π is lo or ∆ξ is lo) then dyn is med
5. if ∆ξ is hi and (∆γ is lo or ∆π is lo) then dyn is med
6. if ∆π is lo and ∆γ is lo and ∆ξ is lo then dyn is lo
7. if K is lo or Z is lo or T is very lo then dyn is lo

Confrontation-based:
1. if B is hi and S is hi then dyn is hi
2. if (B is hi and S is lo) or (B is lo and S is hi) then dyn is med
3. if B is lo and S is lo then dyn is lo

Fig. 1. Fuzzy rule bases for dynamism.

rest of the parameters. The parameters of these operators have been included into
the solutions, thus providing the means for self-adapting them. More precisely,
in the case of real-valued parameters 〈x1, ..., xn〉 mutation is done by having
σ′i = σi · exp(τ ′ ·N(0, 1) + τ ·Ni(0, 1)) and x′i = xi + σi · Ni(0, 1) where σi
is the mutation parameter for xi, τ

′ = 1/
√

2n, and τ = 1/
√

2
√
n. Likewise,

integer-valued parameters 〈z1, ..., zm〉 are mutated by having ς ′i = max(1, ςi ·
exp(τ ·N(0, 1) + τ ′ ·N(0, 1))), ψi = 1 − (ς ′i/m)(1 +

√
1 + (ς ′i/m)2)−1 and z′i =

zi + bln(1− U(0, 1))/ln(1− ψi)c − bln(1− U(0, 1))/ln(1− ψi)c where ςi is the

mutation parameter for zi, τ = 1/
√

2m and τ ′ = 1/
√

2
√
m.

As for recombination, we have used a “cut and splice” operator that recom-
bines two individuals by swapping cut pieces with different sizes that provides
new maps which contain a different number of planets in relation to their parents,
hence adding again additional self-adapting capabilities to the algorithm.

3 Experimental Results

We have used the DEAP library [2] to implements the EA described previously.
The algorithm has employed a population size of 100 individuals and a (µ+ λ)
generational scheme, with µ = 10, λ = 100. The bots used to evaluate the
individuals were obtained from the Google AI Challenge competition- These
bots (Manwe1, Flagscapper’s bot2 and fglider’s bot3) ranked in the top 100 (there
were over 4600 participants) and have their source code available. The duration
of the games was limited to τmax = 400 turns. Regarding the evaluation of fuzzy
rules, we have used the min t-norm, the max t-conorm, and the centre of mass
as defuzzification method.

We have run two sets of experiments focusing on the behaviour of the algo-
rithm when optimizing dynamism using either a confrontation-based (CB) or a

1 https://github.com/Manwe56/Manwe56-ai-contest-planet-wars
2 http://flagcapper.com/?c1
3 http://planetwars.aichallenge.org/profile.php?user_id=8490



Balance Confrontation−based Resource−based

0.3

0.4

0.5

0.6

0.7

0 2500 5000 7500 10000 0 2500 5000 7500 10000 0 2500 5000 7500 10000
evaluations

Resource−based Confrontation−based

Fig. 2. Evolution of the different objective functions. In the middle and rightmost
graph we depict the evolution of dynamism measured in both ways when one of them
is subject to optimization (the one indicated in the sub-graph title). The leftmost graph
indicates the evolution of balance when either objective function is being optimized.
Each line represents the average of 10 runs of the evolutionary algorithm and the
shaded area indicates the standard error of the mean.

resource-based (RB) approach. The results are shown in Fig. 2. Let us firstly fo-
cus on the middle and rightmost sub-figures which provide an indication on the
correlation of both objective functions when one of them is being optimized. It is
clear from these plots that both measures are fairly orthogonal, in the sense that
when one of them is optimized the other one follows a rather flat trajectory. Thus
they can be seen as truly complementary views on game dynamism. Notice also
that CB fitness seems to converge faster, likely indicating that confrontations can
be induced more easily than wide resource fluctuations by adjusting the map.
Another interesting fact is shown in the leftmost sub-figure. Therein we show
how balanced are the games when either objective function is being optimized.
The measure of balanced was defined elsewhere aiming to analyse its trade-off
with a RB version of dynamism, and essentially amounts to measure how the
three resources (planets, growth capacity and ships) remain balanced (i.e., their
absolute difference is small) for the two players throughout the game. While
balance seems to follow a flat trajectory when RB dynamism is being optimized,
there is an increasing trend in the case of optimizing CB dynamism. We believe
this can be due to the fact that continuous battles prevent the accumulation of
resources by either party and push towards their mutual cancellation.

Fig. 3 shows the progress of the variables used to measure the dynamism
of the maps during evolution. Unsurprisingly, variables used in the function
under optimization in either case exhibit an increasing trend in general. It is
more interesting to note some cross-relationships. Firstly, the conquering rate
K grows higher in the case of CB fitness than in RB fitness, despite the fact it



B K

PD1 PD2

PD3 S

T Z

0.10

0.15

0.20

0.25

0.30

0.6

0.8

1.0

1.0

1.2

1.4

1.00

1.25

1.50

1.1

1.3

1.5

1.7

0.3

0.4

0.5

0.6

0.2

0.3

0.4

0.5

0.6

0.002

0.003

0.004

0.005

0 2500 5000 7500 10000 0 2500 5000 7500 10000
evaluations

va
lu

e

Confrontation−based Resources−based

Fig. 3. Evolution of the different variables involved in the rules of the fuzzy sets.

is only explicitly included in the latter. This is side effect of the optimization
of the battle rate B: in order to conquer a planet for the first time it must be
placed under attack; hence an increase in the number of conquered plants implies
another increase in the number of battles, a fact exploited by the evolutionary
algorithm. Likewise the reconquering rate is also higher in CB fitness since a
high number of battles can eventually lead to numerous planets changing hands
(note also that CB fitness heavily revolves around B whereas RB fitness involves



15.00

20.00

25.00

30.00

C
onfrontations

R
esources

nu
m

be
r 

of
 p

la
ne

ts

2.00

3.00

4.00

5.00

6.00

C
onfrontations

R
esources

m
ea

n 
di

st
an

ce
 b

et
w

ee
n 

pl
an

et
s

−0.50

−0.25

 0.00

 0.25

C
onfrontations

R
esources

co
rr

el
at

io
n 

si
ze

−
sh

ip
s

0.90

1.00

1.10

1.20

1.30

1.40

C
onfrontations

R
esources

pl
an

et
 s

iz
es

 s
td

ev

Fig. 4. Several characteristics of the best generated map for every run and objective
function: number of planets in the map, average distance between these planets, corre-
lation between planets’ sizes and their initial number of ships and standard deviation
of the planets’ sizes.

a higher number of variables among which different trade-offs can be attained).
Both objective functions tend to produce longer games (i.e., higher T ); while this
is explicitly stated in the RB function, it emerges implicitly in CB fitness since
longer games increase the number of battles that take place. It also increases the
number of ships ever produced which again forces an increase in the number of
battles in order to keep a high ratio of ships destroyed.

Let us finally inspect the characteristics of the evolved maps (Fig. 4). As it
can be seen, the maps obtained from optimizing both functions are similar in
terms of having a similar correlation between the size of planets and the initial
number of ships placed on them, and in terms of the variability of planet sizes.
They do however differ in the number of planets and the mean distance among
them. The lower number of planets in CB fitness can be explained by the fact that
having a low number of planets reduce the expansion possibilities for players,
thus forcing them to focus on the same planets more often and hence leading to a
higher number of battles. Having a higher distance among planets has the effect
of increasing the time-lag between the moment decisions are taken (i.e., ships
are dispatched to a target) and the moment ships arrive to their destination.
We hypothesize that this larger time-lag introduces a factor of instability by
making it more difficult to hold positions and increasing the time of reaction
upon attacks, thus promoting more battles to regain control of planets.



4 Conclusion and Future Work

This paper presents a PCG method that is capable of generating maps for the
RTS game Planet Wars. These maps should fulfil some desirable requirements
in terms of dynamism in order to obtain interesting and attractive games. This
dynamism has been tackled from two different approaches: a RB approach that
looks for a high level of dynamism in players’ resources, and a CB approach,
that focuses on battles and lost ships. Both approaches have been shown to
be orthogonal, thus suggesting their joint optimization (either in a single- or a
multi-objective scenario) as a potential line of future research. It is interesting
to note the higher correlation of CB fitness with balance. We plan to analyse
further this connection by introducing subjective evaluation of the generated
maps in a future work, so as to analyse the attractiveness of games for human
players.

Acknowledgements This work is partially supported by Spanish MICINN
under project ANYSELF (TIN2011-28627-C04-01), by Junta de Andalućıa under
project P10-TIC-6083 (DNEMESIS) and by Universidad de Málaga, Campus de
Excelencia Internacional Andalućıa Tech.

References

1. Entertainment Software Association: Essential facts about the computer and video
game industry (2012), http://www.theesa.com/facts/pdfs/esa_ef_2012.pdf

2. Fortin, F.A., Rainville, F.M.D., Gardner, M.A., Parizeau, M., Gagné, C.: DEAP:
Evolutionary algorithms made easy. Journal of Machine Learning Research 13, 2171–
2175 (jul 2012)

3. Lara-Cabrera, R., Cotta, C., Fernández-Leiva, A.J.: Procedural map generation for
a RTS game. In: Leiva, A.F., et al. (eds.) 13th International GAME-ON Conference
on Intelligent Games and Simulation, pp. 53–58. Eurosis, Malaga (Spain) (2012)

4. Lara-Cabrera, R., Cotta, C., Fernández-Leiva, A.J.: A procedural balanced map
generator with self-adaptive complexity for the real-time strategy game planet wars.
In: Esparcia-Alcázar, A., et al. (eds.) Applications of Evolutionary Computation,
pp. 274–283. Springer-Verlag, Berlin Heidelberg (2013)

5. Li, R.: Mixed-integer evolution strategies for parameter optimization and their ap-
plications to medical image analysis. Ph.D. thesis, Leiden University (2009)

6. Lucas, S.M., Mateas, M., Preuss, M., Spronck, P., Togelius, J.: Artificial and Com-
putational Intelligence in Games (Dagstuhl Seminar 12191). Dagstuhl Reports 2(5),
43–70 (2012)

7. Nogueira, M., Cotta, C., Fernández-Leiva, A.J.: On modeling, evaluating and in-
creasing players’ satisfaction quantitatively: Steps towards a taxonomy. In: Chio,
C.D., et al. (eds.) Applications of Evolutionary Computation. Lecture Notes in
Computer Science, vol. 7248, pp. 245–254. Springer-Verlag, Málaga, Spain (2012)

8. Rudolph, G.: An evolutionary algorithm for integer programming. In: Davidor, Y.,
Schwefel, H.P., Männer, R. (eds.) Parallel Problem Solving from Nature III, Lecture
Notes in Computer Science, vol. 866, pp. 139–148. Springer-Verlag, Jerusalem, Israel
(1994)


