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Integrality of Homfly 1-tangle invariants

H. R. Morton

Abstract Given an invariant J(K) of a knot K , the corresponding 1-
tangle invariant J ′(K) = J(K)/J(U) is defined as the quotient of J(K)
by its value J(U) on the unknot U . We prove here that when J is the
Homfly satellite invariant determined by decorating K with any eigenvector
of the meridian map in the Homfly skein of the annulus then J ′ is always
an integer 2-variable Laurent polynomial. Specialisation of the 2-variable
polynomials for suitable choices of eigenvector shows that the 1-tangle ir-
reducible quantum sl(N) invariants of K are integer 1-variable Laurent
polynomials.

AMS Classification 57M25
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Introduction

Decorating a framed knot K with a pattern Q (a diagram in the standard
annulus) determines a satellite K ∗ Q of K , whose Homfly polynomial is a
2-variable Laurent polynomial P (K ∗ Q) ∈ Z[v±1, z±1]. For each fixed Q this
gives a 2-variable invariant of the knot K . We admit linear combinations of
patterns, regarded as elements of the Homfly skein of the annulus, in place
of single diagrams Q, and extend our coefficients to the ring Λ of Laurent
polynomials Z[v±1, s±1] with denominators sr −s−r, r ≥ 1, taking z = s−s−1 ,
to provide an invariant J(K) = P (K ∗ Q) ∈ Λ for any Λ-linear combination Q
of patterns.

For each partition λ of n and each N , the quantum sl(N)q invariant of K when
colored by the irreducible module corresponding to λ is an integral Laurent
polynomial in s, with q = s2 . It has been known for some time, [?, ?, ?, ?], how
to choose a decoration Qλ so that the 2-variable Homfly invariant P (K ∗ Qλ)
gives all these 1-variable invariants for different values of N by substituting
v = sN . The invariant P (K ∗ Qλ) typically involves denominators sr − s−r

with r up to the maximum hook-length of the partition λ.

Copyright declaration is printed here

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Liverpool Repository

https://core.ac.uk/display/80775522?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 H. R. Morton

In [?] Thang Le showed that the 1-tangle invariant J ′
K(Vλ) of a framed knot

K when colored by an irreducible module Vλ over any quantum group is an
integer Laurent polynomial in the quantum parameter q . In this case the
‘quantum dimension’ of Vλ , which is JU (Vλ), is itself in Z[q±1] and hence so is
the invariant JK(Vλ).

Consequently the denominators in the 2-variable invariant P (K ∗ Qλ) will be
cancelled by terms in the numerator when v is replaced by sN for any N . Each
of the resulting 1-variable Laurent polynomial invariants of K is then divisible
by the value of the invariant for the unknot. Many constructions of manifold
invariants based on quantum invariants involve substitution of a root of unity
for the variable s; the 1-tangle invariant gives a reliable means of retaining
information at values of s for which the quantum dimension of the coloring
module is zero.

The purpose of this paper is to show that the integrality of these sl(N)q 1-
tangle invariants of K can already be seen at the 2-variable level. We show
further that if J(K) = P (K ∗ Q) where Q is any eigenvector of the meridian
map on the Homfly skein of the annulus then the 1-tangle invariant J ′(K) lies in
Z[v±1, s±1]. Such eigenvectors Q include the elements Qλ mentioned already,
as well as a wider family Qλ,µ , [?], depending on two partitions λ of n and µ of
p. These give a single 2-variable invariant which packages together for different
N the quantum invariants coming from the irreducible submodule of the tensor
product of n copies of the fundamental sl(N)q module and p copies of its dual
determined by the partitions λ and µ. The individual 1-variable invariants are
recovered from P (K ∗Qλ,µ) in the form of a single 2-variable integral invariant
J ′(K) = aK(λ, µ) which yields each sl(N)q invariant by setting v = sN . In the
simplest case where n = p = 1 the modules are the adjoint representations of
sl(N)q , and the 2-variable invariant is closely related to the Homfly polynomial
of the reverse parallel of the knot.

The eigenvectors Qλ,µ of the meridian map in the Homfly skein of the annulus
are described explicitly in [?], where further details of their properties can
be found. The main result here is the following integrality theorem for the

2-variable 1-tangle invariants aK(λ, µ) =
P (K ∗ Qλ,µ)

P (U ∗ Qλ,µ)
of a framed knot K

coming from J(K) = P (K ∗ Qλ,µ).

Theorem 1 Let K be a framed knot and let Q be any eigenvector of the

meridian map. Then the 1-tangle invariant aK = P (K ∗ Q)/P (U ∗ Q) is a

2-variable integer Laurent polynomial aK ∈ Z[v±1, s±1].
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As a corollary the Homfly polynomial P (K ∗ Qλ,µ) of the satellite K ∗ Qλ,µ

will always factorise as P (K ∗ Qλ,µ) = aK(λ, µ)P (U ∗ Qλ,µ) with aK(λ, µ) ∈
Z[v±1, s±1].

The proof depends on controlling the powers of z−1 in a skein resolution of
a single diagram in a surface in terms of the number of null-homotopic closed
components of the diagram. Calculations in which braids interact with an
element of the Hecke algebra which closes to give Qλ , based on [?], are then
combined with relations from [?] between Qλ,µ , Qλ and Qµ to complete the
argument.

1 Homfly skeins and resolutions

The general setting

Homfly skein theory applies to a surface F with some distinguished input and
output boundary points.

The (linear) skein of F is defined as linear combinations of diagrams in F , up
to Reidemeister moves II and III, modulo the skein relations

(1) − = (s − s−1) ,

(2) = v−1 .

The coefficient ring Λ is taken as Z[v±1, s±1], with denominators {r} = sr −
s−r, r ≥ 1.

Application of the first relation to the crossing in the second relation gives the

relation (v−1−v) = z . This can be used to remove a null-homotopic

curve without crossings from a diagram at the expense of introducing z−1

in the coefficients.

Examples

The skein of the plane is spanned by a single element, . Any link L represents

P (L) where P (L) ∈ Λ is its Homfly polynomial.
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n p

Figure 1: The framework for an (n, p) tangle

When F is a rectangle with n outputs and p inputs at the top, matched at the
bottom as in figure ?? the diagrams are called (n, p)-tangles.

The resulting skein, Hn,p , has finite dimension (n + p)!, and is an algebra over
Λ, where the product is induced by placing one tangle above another.

Remark In some contexts 1-tangles are known as (1, 1)-tangles, and in such
cases we should expand the name of (n, p)-tangles to ([n, p], [n, p])-tangles.

Resolutions

A resolution tree for a diagram D in F is a directed tree of diagrams in F , with
initial vertex D , having either one or two edges leaving each internal vertex.
Two edges lead to the diagrams where one crossing in the current diagram is
either switched or smoothed. A single edge performs a Reidemeister move of
type I on the current diagram or removes a null-homotopic closed curve without
crossings.

The following general integral resolution lemma controls the use of negative
powers of z , and will shortly be applied in Hn,p . Write k(D) for the number
of null-homotopic closed curves in a diagram D .

Lemma 1 Let D be a diagram in a surface F having a resolution tree with

diagrams {Di : i ∈ I} at its end vertices. Then D can be written in the skein

of F as a Λ-linear combination of {Di} in the form

zk(D)D =
∑

i∈I

ciz
k(Di)Di,

where ci ∈ Z[v±1, z].

Proof By induction on the number of edges of the resolution tree.

• 1. If two edges leave the vertex D then the resolution has switched or
smoothed a crossing of sign ±1 in D , resulting in diagrams D∓ and
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D0 which satisfy D = D∓ ± zD0 . Now k(D∓) = k(D) while k(D0) ≤
k(D) + 1. Then

zk(D)D = zk(D∓)D∓ ± zazk(D0)D0,

with a ≥ 0, and the resolution subtrees for D∓ and D0 allow the right
hand side to be expanded in terms of the end vertices Di by induction.
The coefficients ci are either unchanged or multiplied by ∓za, a ≥ 0.

• 2. If a single edge leaving D comes from a Reidemeister type I move
then the result is immediate. If the edge corresponds to the removal of a
null-homotopic closed curve without crossings, leading to a diagram D′ ,
then k(D′) = k(D) − 1, while zD = (v−1 − v)D′ in the skein. Then

zk(D)D = (v−1 − v)zk(D′)D′,

and again induction gives the required expansion, using the subtree for
D′ whose coefficients ci are multiplied by (v−1 − v).

The induction starts trivially for a resolution tree with 0 edges.

Resolutions in Hn,p

A framed knot K can be represented as a 1-tangle T (K) by a single knotted
arc as in figure ??. The (n, p)-parallel of this, Tn,p(K), in the skein Hn,p is
constructed by drawing n+p parallel strands to the arc T (K), with n oriented
in one sense and p in the other, illustrated with n = 2, p = 1.

Figure 2: A 1-tangle and its (2, 1)-parallel

Standard procedures allow its resolution into (n+p)! totally descending tangles
without closed components; these are tangles in which every crossing is first
met as an overcrossing when the arcs are traversed in order. The ordering of
the arcs in each of these tangles can be chosen by ordering their initial points
counterclockwise around the boundary, starting from the bottom left corner.
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As a corollary of the integrality lemma above, Tn,p(K) can be written as a
linear combination of these tangles with all coefficients in Z[v±1, z].

In the case p = 0 such tangles are the ‘positive permutation braids’, {bπ;π ∈
Sn}, with strings oriented from bottom to top, while when n = 0 they are again
positive permutation braids {b∗ρ; ρ ∈ Sp}, with string orientation from top to
bottom. In general each tangle is determined up to isotopy by knowing which
input and output points are connected by its arcs.

For each tangle we may count the number k of its arcs which connect input
and output points at the bottom. Then 0 ≤ k ≤ min(n, p). We can write

Tn,p(K) in the skein Hn,p as Tn,p(K) = T
(0)
n,p(K) + T

(1)
n,p(K) where T

(0)
n,p(K) is

a combination of tangles with k = 0 and T
(1)
n,p(K) is a combination of tangles

with k ≥ 1. Tangles with k = 0 have the form bπ ⊗ b∗ρ for some π ∈ Sn and
ρ ∈ Sp , where ⊗ denotes juxtaposition of tangles side by side. We then have

T (0)
n,p(K) =

∑

π∈Sn,ρ∈Sp

cπ,ρ(K)(bπ ⊗ b∗ρ),

with all coefficients cπ,ρ(K) in Z[v±1, z].

The subspace H
(1)
n,p of the algebra Hn,p spanned by the totally descending tan-

gles with k ≥ 1 forms a 2-sided ideal, and indeed is one of a chain of ideals

H
(l)
n,p , spanned by the tangles with k ≥ l , which are discussed further in [?]. The

closure map, induced by taking an (n, p)-tangle to its closure in the annulus,
carries the skein Hn,p to a subspace Cn,p of the skein C of the annulus. The

image of H
(1)
n,p under this map can readily be seen to lie in Cn−1,p−1 ⊂ Cn,p .

In much of what follows we can work modulo Cn−1,p−1 , so that the element

T
(1)
n,p(K) will not figure largely in the calculations.

2 The meridian map

The skein of the annulus, C , has been studied extensively, starting with work of
Turaev [?]. It forms a commutative algebra over Λ, with the product induced
by placing two diagrams in concentric annuli. The meridian map ϕ : C → C
is induced by including a single meridian curve around a diagram D in the
thickened annulus to give the diagram shown in figure ??.
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ϕ(D) =

D

Figure 3: The meridian map

Satellites

Diagrams in the annulus are sometimes known as patterns when they are used
in the construction of satellites of a framed knot. Starting with a framed knot
K and a pattern Q, the satellite K ∗ Q is formed by replacing the framing
annulus around K with the annulus containing Q. This operation, known as
decorating K by Q, induces a linear map at the skein level, so that the Homfly
polynomial P (K ∗Q) depends only on Q as an element of the skein C . If K is
drawn in the annulus as the closure of a 1-tangle then decorating it by Q gives
a diagram of K ∗ Q in the annulus, shown in figure ??, and induces a linear
map TK : C → C .

Q

Figure 4: Decorating a closed 1-tangle

If Q is an eigenvector of TK with eigenvalue aK then K ∗Q = TK(Q) = aKQ =
aKU ∗Q where U is the unknot with framing 0. Taking the Homfly polynomial
then gives aK = P (K ∗ Q)/P (U ∗ Q) as the 1-tangle invariant J ′(K) coming
from J(K) = P (K ∗ Q).

Eigenvectors

The subspaces Cn,p ⊂ C are invariant under the meridian map ϕ, and under TK .
A basis Qλ of Cn,0 consisting of eigenvectors of ϕ determined by partitions λ of

Algebraic & Geometric Topology, Volume X (20XX)
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n has been described in [?]. The element Qλ is constructed there as the closure
of an idempotent eλ in the skein Hn,0 , which is isomorphic to the Hecke algebra
Hn of type A. More recent constructions of Kawagoe and Lukac, [?, ?], following
the interpretation of Cn,0 as symmetric functions of degree n in N variables,
show that the counterpart of the Schur function sλ is also an eigenvector of
the meridian map which can be identified with Qλ . The existence of a basis
for the whole space C consisting of eigenvectors of ϕ with distinct eigenvalues,
indexed by pairs λ, µ of partitions, is established in [?], and explicit formulae
for the eigenvectors Qλ,µ are given in [?]. Any eigenvector Q of the meridian
map is then a multiple of Qλ,µ for some partitions λ, µ.

Integrality

We are now in a position to establish the main integrality result.

Theorem 1 Let K be a framed knot and let Q be any eigenvector of the

meridian map. Then the 1-tangle invariant aK = P (K ∗ Q)/P (U ∗ Q) is a

2-variable integer Laurent polynomial aK ∈ Z[v±1, s±1].

Proof It is readily noted, [?], that the map TK commutes with the meridian
map ϕ. Since the eigenvalues of ϕ are distinct then any eigenvector Q of ϕ
is also an eigenvector of TK . The 1-tangle invariant J ′(K) coming from the
satellite invariant J(K) = P (K ∗Qλ,µ) is then the eigenvalue a(λ, µ) of TK for
its eigenvector Qλ,µ . The integrality of a(λ, µ) will now be established using
features of Qλ and Qλ,µ from [?] and [?].

Turning the annulus over induces a symmetry ∗ in C which carries an element
Q to Q∗ . If Q ∈ Cn,p then Q∗ ∈ Cp,n . Thus if λ is a partition of n and µ is a
partition of p we have Qλ ∈ Cn,0 and Q∗

µ ∈ C0,p and their product QλQ∗
µ lies

in Cn,p .

In [?] it is shown that Qλ,µ = QλQ∗
µ+W where W ∈ Cn−1,p−1 . Now TK(Qλ,µ) =

a(λ, µ)Qλ,µ so TK(QλQ∗
µ) = a(λ, µ)QλQ∗

µ + V where V ∈ Cn−1,p−1 .

The idempotent eλ in [?], whose closure is Qλ , can be factorised, following

lemma 11 there, as eλ = e
(a)
λ e

(b)
λ so that e

(a)
λ βe

(b)
λ = k(β, λ)eλ with k(β, λ) ∈

Z[s±1], for any n-braid β . It follows that the closure of eλγ , which is also the
closure of eλγeλ , can be written as c(γ, λ)Qλ , with c(γ, λ) ∈ Z[s±1], for any
n-braid γ .

Algebraic & Geometric Topology, Volume X (20XX)



Integrality of Homfly 1-tangle invariants 9

We can express TK(QλQ∗
µ) as the closure of the element (eλ ⊗ e∗µ)Tn,p(K) in

Hn,p . Now

(eλ ⊗ e∗µ)Tn,p(K) = (eλ ⊗ e∗µ)T (0)
n,p(K), modH(1)

n,p.

The closure of

(eλ ⊗ e∗µ)T (0)
n,p(K) =

∑

π∈Sn,ρ∈Sp

cπ,ρ(eλbπ ⊗ e∗µb∗ρ)

is a scalar multiple A(λ, µ)QλQ∗
µ , where

A(λ, µ) =
∑

π∈Sn,ρ∈Sp

cπ,ρ(K)c(bπ, λ)c(bρ, µ) ∈ Z[v±1, s±1].

Then TK(QλQ∗
µ) = A(λ, µ)QλQ∗

µ modulo Cn−1,p−1 . Hence A(λ, µ) = a(λ, µ)
is the 1-tangle invariant P (K ∗Qλ,µ)/P (U ∗Qλ,µ), which is a 2-variable integer
Laurent polynomial in Z[v±1, s±1], as claimed.

3 Some relations

The 1-tangle invariants a(λ, µ) of K are not all independent.

Firstly there are some symmetries.

• By reversing orientation of all strings we get a(µ, λ) = a(λ, µ).

• Replacing λ and µ by their conjugate partitions switches s for −s−1 in
a(λ, µ).

Secondly the 1-variable invariant a(λ, µ)|v=sN agrees with a(ν)|v=sN for some
explicit ν depending on N,λ, µ, and corresponds to an irreducible quantum
sl(N) invariant. Details of the appropriate partition ν can be found in [?].

An explicit determinantal construction for Qλ,µ is given in [?] in terms of the
elements hn = Qλ,µ where p = 0 and λ has a single part, and h∗

p with the
reverse orientation, where n = 0 and µ has a single part. These elements
generate C freely as an algebra.

The general construction of Qλ,µ in [?] can be illustrated by the case when λ
has parts 2, 2, 1 and µ has parts 3, 2.

Take a matrix with diagonal entries as shown, corresponding to the parts of λ
and µ.
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h∗
2

h∗
3

h2

h2

h1













Complete the rows by shifting indices upwards for the parts of λ, and down-
wards for the parts of µ, to get

M =













h∗
2 h∗

1 1 0 0
h∗

4 h∗
3 h∗

2 h∗
1 1

1 h1 h2 h3 h4

0 1 h1 h2 h3

0 0 0 1 h1













Then Qλ,µ = det M .

Remark The subalgebra of C spanned by the elements Qλ,µ with µ = φ can
be viewed as the algebra of symmetric functions in variables x1, . . . , xN , for
large N . The elements hn play the role of the complete symmetric functions
and then Qλ,φ corresponds to the classical Schur function sλ , expressed as
a polynomial in {hi} via the Jacobi-Trudy formula. Determinants similar to
the general case for Qλ,µ are used by Koike [?] in giving universal formulae
for the irreducible characters of rational representations of GL(N), along with
interpretations in terms of skew Schur functions.

Examples

The simplest example is where n = p = 1, so that λ and µ each have one part
of length 1. In this case the formula gives Qλ,µ = h1h

∗
1 − 1, so that the knot

invariant < K ∗Qλ,µ > is very nearly the reverse-parallel invariant in this case.

For the figure-eight with zero framing when |λ| = |µ| = 1 we have a(λ, µ) =
3− 2z2 − 6z4 − 2z6 + (v2 + v−2)(−2− z2 − 2z4 + z6) + (v4 + v−4)(1 + 2z2 + z4).
The matrix of coefficients is displayed below, along with the invariant for the
trefoil with some choice of framing - change of framing involves simply factors
of v2 .
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Figure eight invariant Trefoil invariant

v −4 −2 0 2 4
z

6 1 −2 1
4 1 −2 −6 −2 1
2 2 −1 −2 −1 2
0 1 −2 3 −2 1

v 0 2 4 6
z

4 1 −2 1
2 1 2 −7 −4
0 1 −4 4

Relations with the Kauffman polynomial

In [?] Rudolph demonstrated a relation between the Kauffman polynomial of a
link and the Homfly reverse parallel invariant. His exact result can be described
by using the decoration Qλ,λ with |λ| = 1, as above, on all components of a link
L. Then the Homfly polynomial of this decorated link determines an element
of Z2[v

±1, z±1] when the coefficients are reduced mod 2. Rudolph showed that
this invariant is the same as the Kauffman polynomial of the link, again with
coefficients reduced mod 2, when the Kauffman variables v and z are replaced
by v2 and z2 , and both Kauffman and Homfly are normalised to have the value
1 on the empty diagram. The 1-tangle invariants above should then reduce to
the Kauffman polynomials of the figure eight or trefoil knots, normalised to
have the value 1 on the unknot, with this change of variable. It is reassuring
to compare the mod 2 reduction of the invariants above with the coefficients
for the Kauffman polynomials of these knots shown below, [?].

Kauffman polynomial for figure eight Kauffman polynomial for trefoil

v −2 −1 0 1 2
z

3 1 1
2 1 2 1
1 −1 −1
0 −1 −1 −1

v −5 −4 −3 −2
z

2 1 1
1 1 1
0 1 2

A possible extension

Blanchet and Beliakova [?] describe a decoration yλ in the Kauffman skein of
the annulus corresponding to each partition λ. Together these account for all
possible Kauffman satellite invariants. Where an unoriented link is decorated by
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one such element yλi
on each component its Kauffman polynomial may be com-

pared with the Homfly polynomial of the same link decorated correspondingly
by the elements Qλi,λi

. The invariant for decorations yλ and Qλ,λ requires the
use of the parameter s with z = s−s−1 unless the partition λ is self-conjugate.
When working mod 2, replacing s by s2 will also have the effect of replacing
z by z2 . Limited evidence suggests the following extension of Rudolph’s result
from the case |λ| = 1 to general Kauffman satellite invariants.

Conjecture 1 Decorate each component Li of a framed unoriented link L
by yλi

. The Kauffman polynomial of this decorated link, with v, s replaced by

v2, s2 and the coefficients reduced mod 2, equals the mod 2 reduction of the

Homfly polynomial of L when each Li is decorated by Qλi,λi
.

Known results about quantum dimensions allow the conjecture to be confirmed
for the unknot, and for the meridian maps. It is possible that this information
can be combined with the branching rules for multiplying yλ and Qλ,λ by
single strings in their respective skeins to give a proof of the conjecture. It
would certainly be of interest to study further the 1-tangle invariants for Qλ,λ .
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