183 research outputs found

    Fluid oscillations in a laboratory geyser with a bubble trap

    Get PDF
    Author Posting. © The Author(s), 2018. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in Rudolph, M. L., Sohn, R. A., & Lev, E.. Fluid oscillations in a laboratory geyser with a bubble trap. Journal of Volcanology and Geothermal Research, 368, (2018):100-110. doi:10.1016/j.jvolgeores.2018.11.003.Geysers are rare geologic features that episodically erupt water and steam. While it is understood that the eruptions are triggered by the conversion of thermal to kinetic energy during decompression of hot uids, geysers commonly exhibit a range of dynamic behaviors in-between and during eruptions that have yet to be adequately explained. In-situ measurements of temperature and pressure as well as remote geophysical techniques have revealed oscillatory behavior across a range of timescales, ranging from eruption cycles to impulsive bubble collapse events. Many geysers, including Old faithful in Yellowstone National Park, USA, are believed to have o set subsurface reservoirs (referred to as a `bubble trap') that can trap and accumulate noncondensable gas or steam entering the system. The impact of a bubble trap on the dynamic behaviors of the system, however, has not been fully established. We constructed a laboratory bubble trap and performed a series of experiments to study how uids oscillate back and forth between the eruption conduit and laterally-offseet reservoir in-between eruptions. We present a new theoretical model based on Hamiltonian mechanics that successfully predicts the oscillation frequencies observed in our experiments based on the conduit system geometry, the amount of gas that has accumulated in the bubble trap, and the amount of liquid water in the system. We demonstrate that when scaled to Old Faithful Geyser, this mechanism is capable of producing oscillations at the observed frequencies.The authors thank Paul Fucile and Glenn Macdonald for engineering support in designing and constructing the laboratory analog geyser rig. Funding for the laboratory geyser was provided by the US National Science Foundation grant EAR-1516361. EL was funded through a RISE award from Columbia University.2019-11-1

    Cascading parallel fractures on Enceladus

    Full text link
    Active eruptions from the south polar region of Saturn's small (~500 km diameter) moon Enceladus are concentrated along a series of lineaments known as the `tiger stripes', thought to be partially open fissures that connect to the liquid water ocean beneath the ice shell. Whereas aspects of the tiger stripes have been addressed in previous work, no study to date simultaneously explains why they should be located only at the south pole, why there are multiple approximately parallel and regularly spaced fractures, and what accounts for their spacing of ~35 km. Here we propose that secular cooling and the resulting ice shell thickening and global tensile stresses cause the first fracture to form at one of the poles, where the ice shell is thinnest due to tidal heating. The tensile stresses are thereby partially relieved, preventing a similar failure at the opposite pole. We propose that subsequent activity then concentrates in the vicinity of the first fracture as the steadily erupted water ice loads the flanks of the open fissure, causing bending in the surrounding elastic plate and further tensile failure in bands parallel to the first fracture, leading to a cascading sequence of parallel fissures until the conditions no longer permit through-going fractures.Comment: 18 pages, 9 figure

    Eruptions at Lone Star Geyser, Yellowstone National Park, USA: 1. Energetics and eruption dynamics

    Get PDF
    Author Posting. © American Geophysical Union, 2013. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Solid Earth 118 (2013): 4048–4062, doi:10.1002/jgrb.50251.Geysers provide a natural laboratory to study multiphase eruptive processes. We present results from a 4 day experiment at Lone Star Geyser in Yellowstone National Park, USA. We simultaneously measured water discharge, acoustic emissions, infrared intensity, and visible and infrared video to quantify the energetics and dynamics of eruptions, occurring approximately every 3 h. We define four phases in the eruption cycle (1) a 28±3 min phase with liquid and steam fountaining, with maximum jet velocities of 16–28 m s−1, steam mass fraction of less than ∼0.01. Intermittently choked flow and flow oscillations with periods increasing from 20 to 40 s are coincident with a decrease in jet velocity and an increase of steam fraction; (2) a 26±8 min posteruption relaxation phase with no discharge from the vent, infrared (IR), and acoustic power oscillations gliding between 30 and 40 s; (3) a 59±13 min recharge period during which the geyser is quiescent and progressively refills, and (4) a 69±14 min preplay period characterized by a series of 5–10 min long pulses of steam, small volumes of liquid water discharge, and 50–70 s flow oscillations. The erupted waters ascend from a 160–170°C reservoir, and the volume discharged during the entire eruptive cycle is 20.8±4.1 m3. Assuming isentropic expansion, we calculate a heat output from the geyser of 1.4–1.5 MW, which is <0.1% of the total heat output from Yellowstone Caldera.Support comes from NSF (L. Karlstrom, M. Manga), the USGS Volcano Hazards program (S. Hurwitz, F. Murphy, M.J.S. Johnston, and R.B. McCleskey), and WHOI (R. Sohn).2014-02-1

    Eruptions at Lone Star geyser, Yellowstone National Park, USA: 2. Constraints on subsurface dynamics

    Get PDF
    Author Posting. © American Geophysical Union, 2014. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Solid Earth 119 (2014): 8688–8707, doi:10.1002/2014JB011526.We use seismic, tilt, lidar, thermal, and gravity data from 32 consecutive eruption cycles of Lone Star geyser in Yellowstone National Park to identify key subsurface processes throughout the geyser's eruption cycle. Previously, we described measurements and analyses associated with the geyser's erupting jet dynamics. Here we show that seismicity is dominated by hydrothermal tremor (~5–40 Hz) attributed to the nucleation and/or collapse of vapor bubbles. Water discharge during eruption preplay triggers high-amplitude tremor pulses from a back azimuth aligned with the geyser cone, but during the rest of the eruption cycle it is shifted to the east-northeast. Moreover, ~4 min period ground surface displacements recur every 26 ± 8 min and are uncorrelated with the eruption cycle. Based on these observations, we conclude that (1) the dynamical behavior of the geyser is controlled by the thermo-mechanical coupling between the geyser conduit and a laterally offset reservoir periodically filled with a highly compressible two-phase mixture, (2) liquid and steam slugs periodically ascend into the shallow crust near the geyser system inducing detectable deformation, (3) eruptions occur when the pressure decrease associated with overflow from geyser conduit during preplay triggers an unstable feedback between vapor generation (cavitation) and mass discharge, and (4) flow choking at a constriction in the conduit arrests the runaway process and increases the saturated vapor pressure in the reservoir by a factor of ~10 during eruptions.Funding for USGS team members was provided by the USGS Volcano Hazards Program. R. Sohn's participation was supported by the WHOI Green Technology Program. M. Manga, L. Karlstrom and M. Rudolph did receive salary from the National Science Foundation to spend time on this project.2015-06-0

    Clinical emergence of neurometastatic merkel cell carcinoma: a surgical case series and literature review

    Get PDF
    Merkel cell carcinoma (MCC) is a rare cutaneous neuroendocrine neoplasm of possible viral origin and is known for its aggressive behavior. The incidence of MCC has increased in the last 15 years. Merkel cell carcinoma has the potential to metastasize, but rarely involves the central nervous system. Herein, we report three consecutive surgical cases of MCC presenting at a single institution within 1 year. We used intracavitary BCNU wafers (Gliadel®) in two cases. Pathological features, including CK20 positivity, consistent with MCC, were present in all cases. We found 33 published cases of MCC with CNS involvement. We suggest that the incidence of neurometastatic MCC may be increasing, parallel to the increasing incidence of primary MCC. We propose a role for intracavitary BCNU wafers in the treatment of intra-axial neurometastatic MCC

    Quasi-autonomous quantum thermal machines and quantum to classical energy flow

    Get PDF
    There are both practical and foundational motivations to consider the thermodynamics of quantum systems at small scales. Here we address the issue of autonomous quantum thermal machines that are tailored to achieve some specific thermodynamic primitive, such as work extraction in the presence of a thermal environment, while having minimal or no control from the macroscopic regime. Beyond experimental implementations, this provides an arena in which to address certain foundational aspects such as the role of coherence in thermodynamics, the use of clock degrees of freedom and the simulation of local time-dependent Hamiltonians in a particular quantum subsystem. For small-scale systems additional issues arise. Firstly, it is not clear to what degree genuine ordered thermodynamic work has been extracted, and secondly non-trivial back-actions on the thermal machine must be accounted for. We find that both these aspects can be resolved through a judicious choice of quantum measurements that magnify thermodynamic properties up the ladder of length-scales, while simultaneously stabilising the quantum thermal machine. Within this framework we show that thermodynamic reversibility is obtained in a particular Zeno limit, and finally illustrate these concepts with a concrete example involving spin systems

    History and Dynamics of Net Rotation of the Mantle and Lithosphere

    Get PDF
    The net rotation of Earth’s lithosphere with respect to the underlying mantle is the longestwavelength component of toroidal flow in the mantle and is sensitive to both mantle buoyancy structure and lateral viscosity variations. The lithospheric net rotation in the geologic past implied by plate reconstructions using a hotspot reference frame for the past 100 Myr is up to five times greater than the presentday rate of lithospheric net rotation. We explore the role of lateral viscosity variations associated with subcontinental keels in producing the lithospheric net rotation for the geologic past and find that the introduction of subcontinental keels improves the agreement between modeled net rotation and the net rotation present in the plate reconstructions for the past 25 Myr. However, our models with continental keels produce at most 0.16o/Myr of differential rotation between the lithosphere and lower mantle for present-day, and explaining the most rapid rates of lithospheric net rotation during the Cretaceous and Paleogene remains challenging. This suggests the need for either an additional mechanism for generating lithospheric net rotation, or an adjustment to the absolute mantle reference frame relative to which plate motions are specified

    Bubble Mobility in Mud and Magmatic Volcanoes

    Get PDF
    The rheology of particle-laden fluids with a yield stress, such as mud or crystal-rich magmas, controls the mobility of bubbles, both the size needed to overcome the yield stress and their rise speed. We experimentally measured the velocities of bubbles and rigid spheres in mud sampled from the Davis-Schrimpf mud volcanoes adjacent to the Salton Sea, Southern California. Combined with previous measurements in the polymer gel Carbopol, we obtained an empirical model for the drag coefficient and bounded the conditions under which bubbles overcome the yield stress. Yield stresses typical of mud and basaltic magmas with sub-mm particles can immobilize millimeter to centimeter sized bubbles. At Stromboli volcano, Italy, a vertical yield stress gradient in the shallow conduit may immobilize bubbles with diameter . 1 cm and hinder slug coalescence

    Influence of seismicity on the Lusi mud eruption

    No full text

    Core Evolution Driven by Mantle Global Circulation

    Get PDF
    Reconstructions of the Phanerozoic history of mantle global circulation that include past plate motions are used to constrain the thermochemical evolution of the core. According to our mantle global circulation models, the present-day global average heat flux at the core-mantle boundary lies in the range 80-90 mW.m-2, with peak-to-peak, long wavelength lateral variations up to 100 mW.m-2 associated with compositional and thermal heterogeneity in the D”-layer. For core thermal conductivity in the range k=100-130 W.m-1.K-1 we infer that the present-day outer core is thermally unstable beneath the high seismic velocity regions in the lower mantle but thermally stable beneath the large low seismic velocity provinces. A numerical dynamo shows how this boundary heat flux heterogeneity generates departures from axial symmetry in the time average geomagnetic field and the pattern of flow in the outer core. Standard thermochemical evolution models of the core driven by mantle global circulation heat flow predict inner core nucleation between 400 and 1100 Ma. With thermal conductivity k⩽100 W.m-1.K-1 the core heat flow derived from our mantle global circulation models is adequate for maintaining the geodynamo since inner core nucleation, supercritical for dynamo action by thermal convection just prior to inner core nucleation, and marginal for inner core convection
    corecore