22 research outputs found

    β-Catenin is required for endothelial-mesenchymal transformation during heart cushion development in the mouse

    Get PDF
    During heart development endocardial cells within the atrio-ventricular (AV) region undergo TGFβ-dependent epithelial-mesenchymal transformation (EMT) and invade the underlying cardiac jelly. This process gives rise to the endocardial cushions from which AV valves and part of the septum originate. In this paper we show that in mouse embryos and in AV explants TGFβ induction of endocardial EMT is strongly inhibited in mice deficient for endothelial β-catenin, leading to a lack of heart cushion formation. Using a Wnt-signaling reporter mouse strain, we demonstrated in vivo and ex vivo that EMT in heart cushion is accompanied by activation of β-catenin/TCF/Lef transcriptional activity. In cultured endothelial cells, TGFβ2 induces α-smooth muscle actin (αSMA) expression. This process was strongly reduced in β-catenin null cells, although TGFβ2 induced smad phosphorylation was unchanged. These data demonstrate an involvement of β-catenin/TCF/Lef transcriptional activity in heart cushion formation, and suggest an interaction between TGFβ and Wnt-signaling pathways in the induction of endothelial-mesenchymal transformation

    Case report: Primary Ewing sarcoma of the ureter, an exceptional finding of unique manifestation of disease

    Get PDF
    Ewing sarcoma (ES) is the second most common malignant bone tumor in children and has also been described in adults with highly aggressive behavior. ES belongs to the small round blue cell tumor family and presents the distinctive translocation of FET-ETS family genes (85% with EWSR1), generating gene fusions. Extraskeletal ES mainly occurs in soft tissues; the urogenital tract is rarely affected, and ureteral localization is an exceptional event with only 4 cases described in the literature. Here we report the first Italian case of primary ES of the ureter, a 24-year-old young man with lower back pain and a narrowed left ureteral lumen on CT scan. ES of the urogenital tract is an almost unique condition with a nonspecific clinical presentation and a challenging diagnosis for pathologists. We encourage awareness of these exceptional events in the differential diagnosis of ureteral lesions in young patients

    Wnt activation of immortalized brain endothelial cells as a tool for generating a standardized model of the blood brain barrier in vitro

    Get PDF
    Reproducing the characteristics and the functional responses of the blood-brain barrier (BBB) in vitro represents an important task for the research community, and would be a critical biotechnological breakthrough. Pharmaceutical and biotechnology industries provide strong demand for inexpensive and easy-to-handle in vitro BBB models to screen novel drug candidates. Recently, it was shown that canonical Wnt signaling is responsible for the induction of the BBB properties in the neonatal brain microvasculature in vivo. In the present study, following on from earlier observations, we have developed a novel model of the BBB in vitro that may be suitable for large scale screening assays. This model is based on immortalized endothelial cell lines derived from murine and human brain, with no need for co-culture with astrocytes. To maintain the BBB endothelial cell properties, the cell lines are cultured in the presence of Wnt3a or drugs that stabilize β-catenin, or they are infected with a transcriptionally active form of β-catenin. Upon these treatments, the cell lines maintain expression of BBB-specific markers, which results in elevated transendothelial electrical resistance and reduced cell permeability. Importantly, these properties are retained for several passages in culture, and they can be reproduced and maintained in different laboratories over time. We conclude that the brain-derived endothelial cell lines that we have investigated gain their specialized characteristics upon activation of the canonical Wnt pathway. This model may be thus suitable to test the BBB permeability to chemicals or large molecular weight proteins, transmigration of inflammatory cells, treatments with cytokines, and genetic manipulation

    Intratumoral Switch of Molecular Phenotype and Overall Survival in Muscle Invasive Bladder Cancer

    No full text
    In recent years, immunohistochemical protein expression was studied as a surrogate to the molecular classification of bladder cancer, although no tissue biomarkers are available for clinical use to predict survival or the response to neoadjuvant chemotherapy (CT) in UC, as the literature produced conflicting results. This retrospective study included TURB specimens harboring foci of HG pT2 muscle-invasive bladder carcinoma (MIBC) from 251 patients who subsequently underwent radical cystectomy. We performed immunohistochemical analysis on tumor samples, for relevant gene-expression-based markers for basal type (CD44, CK5/6) and luminal type (CK20 and pPARγ). Piescore, investigated in both non-muscle-invasive (NMI) and muscle-invasive (MI) components of the tumor, divided basal and luminal UC-types when at least three of the four markers were consistent with a specific phenotype, mixed types if one/two luminal and basal markers were present simultaneously, and neu-like types when all four markers investigated were negative. Eighteen selected cases were also investigated with RT-PCR to validate, and to increase the specificity of, the immunohistochemical results. We observe an immunophenotypical difference in the NMI and MI components in 96/251 UC patients (38.25%): half of tumors (44/96 cases) have a transition to basal, 36.46% (35/96 cases) to neu-like, 12.5% (12/96 cases) to mixed, and 5.2% (5/96 cases) to luminal phenotypes. Mixed tumors in the NMI component are more likely to change phenotype than other groups, particularly compared with basal tumors, which demonstrate greater stability (only 8/96 cases, p p = 0.027). Overall, the phenotypical switch does not affect lymphovascular invasion, pT, DFS, or OS compared with non-switched cases. In the MI component, the presence of CD44 expression, irrespective of score-related phenotype, shows a protective effect in papillary-type UC (OS p = 0.008, HR 0.453, PFS p = 0.07, HR 0.599), and in UC naïve for CT (p = 0.0479). Piescore immunophenotyping reveals an intratumoral phenotypical transition between the NMI and MI components of the same tumor. The molecular change is a common event in the mixed and luminal categories, but not in basal tumors, which show better phenotypical stability. This phenomenon could partially explain the sensitivity of a subset of luminal UC to chemotherapy: good responders could be “non-real” luminal UC, which acquire nasal markers, such as CD44
    corecore