188 research outputs found

    Recovery of Endogenous β-Cell Function in Nonhuman Primates After Chemical Diabetes Induction and Islet Transplantation

    Get PDF
    OBJECTIVE—To describe the ability of nonhuman primate endocrine pancreata to reestablish endogenous insulin production after chemical β-cell destruction

    Structure and evolution of the mouse pregnancy-specific glycoprotein (Psg) gene locus

    Get PDF
    BACKGROUND: The pregnancy-specific glycoprotein (Psg) genes encode proteins of unknown function, and are members of the carcinoembryonic antigen (Cea) gene family, which is a member of the immunoglobulin gene (Ig) superfamily. In rodents and primates, but not in artiodactyls (even-toed ungulates / hoofed mammals), there have been independent expansions of the Psg gene family, with all members expressed exclusively in placental trophoblast cells. For the mouse Psg genes, we sought to determine the genomic organisation of the locus, the expression profiles of the various family members, and the evolution of exon structure, to attempt to reconstruct the evolutionary history of this locus, and to determine whether expansion of the gene family has been driven by selection for increased gene dosage, or diversification of function. RESULTS: We collated the mouse Psg gene sequences currently in the public genome and expressed-sequence tag (EST) databases and used systematic BLAST searches to generate complete sequences for all known mouse Psg genes. We identified a novel family member, Psg31, which is similar to Psg30 but, uniquely amongst mouse Psg genes, has a duplicated N1 domain. We also identified a novel splice variant of Psg16 (bCEA). We show that Psg24 and Psg30 / Psg31 have independently undergone expansion of N-domain number. By mapping BAC, YAC and cosmid clones we described two clusters of Psg genes, which we linked and oriented using fluorescent in situ hybridisation (FISH). Comparison of our Psg locus map with the public mouse genome database indicates good agreement in overall structure and further elucidates gene order. Expression levels of Psg genes in placentas of different developmental stages revealed dramatic differences in the developmental expression profile of individual family members. CONCLUSION: We have combined existing information, and provide new information concerning the evolution of mouse Psg exon organization, the mouse Psg genomic locus structure, and the expression patterns of individual Psg genes. This information will facilitate functional studies of this complex gene family

    Transoral laser microsurgery for laryngeal cancer: A primer and review of laser dosimetry

    Get PDF
    Transoral laser microsurgery (TLM) is an emerging technique for the management of laryngeal and other head and neck malignancies. It is increasingly being used in place of traditional open surgery because of lower morbidity and improved organ preservation. Since the surgery is performed from the inside working outward as opposed to working from the outside in, there is less damage to the supporting structures that lie external to the tumor. Coupling the laser to a micromanipulator and a microscope allows precise tissue cutting and hemostasis; thereby improving visualization and precise ablation. The basic approach and principles of performing TLM, the devices currently in use, and the associated dosimetry parameters will be discussed. The benefits of using TLM over conventional surgery, common complications and the different settings used depending on the location of the tumor will also be discussed. Although the CO2 laser is the most versatile and the best-suited laser for TLM applications, a variety of lasers and different parameters are used in the treatment of laryngeal cancer. Improved instrumentation has lead to an increased utilization of TLM by head and neck cancer surgeons and has resulted in improved outcomes. Laser energy levels and spot size are adjusted to vary the precision of cutting and amount of hemostasis obtained

    Increased Muscle Stress-Sensitivity Induced by Selenoprotein N Inactivation in Mouse: A Mammalian Model for SEPN1-Related Myopathy

    Get PDF
    Selenium is an essential trace element and selenoprotein N (SelN) was the first selenium-containing protein shown to be directly involved in human inherited diseases. Mutations in the SEPN1 gene, encoding SelN, cause a group of muscular disorders characterized by predominant affection of axial muscles. SelN has been shown to participate in calcium and redox homeostasis, but its pathophysiological role in skeletal muscle remains largely unknown. To address SelN function in vivo, we generated a Sepn1-null mouse model by gene targeting. The Sepn1−/− mice had normal growth and lifespan, and were macroscopically indistinguishable from wild-type littermates. Only minor defects were observed in muscle morphology and contractile properties in SelN-deficient mice in basal conditions. However, when subjected to challenging physical exercise and stress conditions (forced swimming test), Sepn1−/− mice developed an obvious phenotype, characterized by limited motility and body rigidity during the swimming session, as well as a progressive curvature of the spine and predominant alteration of paravertebral muscles. This induced phenotype recapitulates the distribution of muscle involvement in patients with SEPN1-Related Myopathy, hence positioning this new animal model as a valuable tool to dissect the role of SelN in muscle function and to characterize the pathophysiological process

    Choanalatresie-Platzhalter

    No full text
    corecore