110 research outputs found

    Transcriptional Basis of Mouse and Human Dendritic Cell Heterogeneity

    Get PDF
    Dendritic cells (DCs) play a critical role in orchestrating adaptive immune responses due to their unique ability to initiate T cell responses and direct their differentiation into effector lineages. Classical DCs have been divided into two subsets, cDC1 and cDC2, based on phenotypic markers and their distinct abilities to prime CD8 and CD4 T cells. While the transcriptional regulation of the cDC1 subset has been well characterized, cDC2 development and function remain poorly understood. By combining transcriptional and chromatin analyses with genetic reporter expression, we identified two principal cDC2 lineages defined by distinct developmental pathways and transcriptional regulators, including T-bet and RORgt, two key transcription factors known to define innate and adaptive lymphocyte subsets. These novel cDC2 lineages were characterized by distinct metabolic and functional programs. Extending our findings to humans revealed conserved DC heterogeneity and the presence of the newly defined cDC2 subsets in human cancer

    Helminth secretions induce de novo T cell Foxp3 expression and regulatory function through the TGF-ÎČ pathway

    Get PDF
    Foxp3-expressing regulatory T (T reg) cells have been implicated in parasite-driven inhibition of host immunity during chronic infection. We addressed whether parasites can directly induce T reg cells. Foxp3 expression was stimulated in naive Foxp3⁻ T cells in mice infected with the intestinal helminth Heligmosomoides polygyrus. In vitro, parasite-secreted proteins (termed H. polygyrus excretory-secretory antigen [HES]) induced de novo Foxp3 expression in fluorescence-sorted Foxp3⁻ splenocytes from Foxp3-green fluorescent protein reporter mice. HES-induced T reg cells suppressed both in vitro effector cell proliferation and in vivo allergic airway inflammation. HES ligated the transforming growth factor (TGF) ÎČ receptor and promoted Smad2/3 phosphorylation. Foxp3 induction by HES was lost in dominant-negative TGF-ÎČRII cells and was abolished by the TGF-ÎČ signaling inhibitor SB431542. This inhibitor also reduced worm burdens in H. polygyrus-infected mice. HES induced IL-17 in the presence of IL-6 but did not promote Th1 or Th2 development under any conditions. Importantly, antibody to mammalian TGF-ÎČ did not recognize HES, whereas antisera that inhibited HES did not affect TGF-ÎČ. Foxp3 was also induced by secreted products of Teladorsagia circumcincta, a related nematode which is widespread in ruminant animals. We have therefore identified a novel pathway through which helminth parasites may stimulate T reg cells, which is likely to be a key part of the parasite's immunological relationship with the host.J.R. Grainger thanks the Wellcome Trust for studentship support through the 4-year PhD Program, H.J. McSorley, K.J. Filbey, and C.A.M. Finney thank the Medical Research Council for studentship support, E.J.D. Greenwood thanks the Wellcome Trust for an undergraduate summer studentship, and K.A. Smith, J.P. Hewitson, Y. Harcus, and R.M. Maizels thank the Wellcome Trust for Programme Grant support. A.Y. Rudensky is a Howard Hughes Medical Institute Investigator and is supported by a National Institutes of Health grant

    Current opportunities to catalyze research in nutrition and cancer prevention – an interdisciplinary perspective

    Get PDF
    Cancer Research UK and Ludwig Cancer Research convened an inaugural international Cancer Prevention and Nutrition Conference in London on December 3–4, 2018. Much of the discussion focused on the need for systematic, interdisciplinary approaches to better understand the relationships of nutrition, exercise, obesity and metabolic dysfunction with cancer development. Scientists at the meeting underscored the importance of studying the temporal natural history of exposures that may cumulatively impact cancer risk later in life. A robust dialogue identified obesity as a major risk for cancer, and the food environment, especially high energy and low nutrient processed foods, as strong and prevalent risk factors for obesity. Further engagement highlighted challenges in the post-diagnostic setting, where similar opportunities to understand the complex interplay of nutrition, physical activity, and weight will inform better health outcomes. Going forward, holistic research approaches, encompassing insights from multiple disciplines and perspectives, will catalyze progress urgently needed to prevent cancer and improve public health

    Self-recognition of the endothelium enables regulatory T-cell trafficking and defines the kinetics of immune regulation

    Get PDF
    This study was supported by the British Heart Foundation (PG 09/002/ 2642). AJR is funded by King’s College London British Heart Foundation Centre of Excellence and EI was supported by the Department of Health via National Institute for Health Research (NIHR) comprehensive Biomedical Research Centre award to Guy’s and St Tomas’ NHF Foundation Trust in partnership with King’s College London and King’s College Hospital NHS Foundation Trust. BG was supported by a British Heart Foundation studentship (FS/10/009/28166) and DC by an Arthritis Research UK Fellowship (18103)

    HLA Class I Binding 9mer Peptides from Influenza A Virus Induce CD4+ T Cell Responses

    Get PDF
    BACKGROUND: Identification of human leukocyte antigen class I (HLA-I) restricted cytotoxic T cell (CTL) epitopes from influenza virus is of importance for the development of new effective peptide-based vaccines. METHODOLOGY/PRINCIPAL FINDINGS: In the present work, bioinformatics was used to predict 9mer peptides derived from available influenza A viral proteins with binding affinity for at least one of the 12 HLA-I supertypes. The predicted peptides were then selected in a way that ensured maximal coverage of the available influenza A strains. One hundred and thirty one peptides were synthesized and their binding affinities for the HLA-I supertypes were measured in a biochemical assay. Influenza-specific T cell responses towards the peptides were quantified using IFNgamma ELISPOT assays with peripheral blood mononuclear cells (PBMC) from adult healthy HLA-I typed donors as responder cells. Of the 131 peptides, 21 were found to induce T cell responses in 19 donors. In the ELISPOT assay, five peptides induced responses that could be totally blocked by the pan-specific anti-HLA-I antibody W6/32, whereas 15 peptides induced responses that could be completely blocked in the presence of the pan-specific anti-HLA class II (HLA-II) antibody IVA12. Blocking of HLA-II subtype reactivity revealed that 8 and 6 peptide responses were blocked by anti-HLA-DR and -DP antibodies, respectively. Peptide reactivity of PBMC depleted of CD4(+) or CD8(+) T cells prior to the ELISPOT culture revealed that effectors are either CD4(+) (the majority of reactivities) or CD8(+) T cells, never a mixture of these subsets. Three of the peptides, recognized by CD4(+) T cells showed binding to recombinant DRA1*0101/DRB1*0401 or DRA1*0101/DRB5*0101 molecules in a recently developed biochemical assay. CONCLUSIONS/SIGNIFICANCE: HLA-I binding 9mer influenza virus-derived peptides induce in many cases CD4(+) T cell responses restricted by HLA-II molecules

    Digital NFATc2 Activation per Cell Transforms Graded T Cell Receptor Activation into an All-or-None IL-2 Expression

    Get PDF
    The expression of interleukin-2 (IL-2) is a key event in T helper (Th) lymphocyte activation, controlling both, the expansion and differentiation of effector Th cells as well as the activation of regulatory T cells. We demonstrate that the strength of TCR stimulation is translated into the frequency of memory Th cells expressing IL-2 but not into the amount of IL-2 per cell. This molecular switch decision for IL-2 expression per cell is located downstream of the cytosolic Ca2+ level. Here we show that in a single activated Th cell, NFATc2 activation is digital but NF-ÎșB activation is graded after graded T cell receptor (TCR) signaling. Subsequently, NFATc2 translocates into the nucleus in an all-or-none fashion per cell, transforming the strength of TCR-stimulation into the number of nuclei positive for NFATc2 and IL-2 transcription. Thus, the described NFATc2 switch regulates the number of Th cells actively participating in an immune response

    Neoplastic Transformation of T Lymphocytes through Transgenic Expression of a Virus Host Modification Protein

    Get PDF
    Virus host evasion genes are ready-made tools for gene manipulation and therapy. In this work we have assessed the impact in vivo of the evasion gene A238L of the African Swine Fever Virus, a gene which inhibits transcription mediated by both NF-ÎșB and NFAT. The A238L gene has been selectively expressed in mouse T lymphocytes using tissue specific promoter, enhancer and locus control region sequences for CD2. The resulting two independently derived transgenic mice expressed the transgene and developed a metastasic, angiogenic and transplantable CD4+CD8+CD69– lymphoma. The CD4+CD8+CD69– cells also grew vigorously in vitro. The absence of CD69 from the tumour cells suggests that they were derived from T cells at a stage prior to positive selection. In contrast, transgenic mice similarly expressing a mutant A238L, solely inhibiting transcription mediated by NF-ÎșB, were indistinguishable from wild type mice. Expression of Rag1, Rag2, TCRÎČ-V8.2, CD25, FoxP3, Bcl3, Bcl2 l14, Myc, IL-2, NFAT1 and Itk, by purified CD4+CD8+CD69– thymocytes from A238L transgenic mice was consistent with the phenotype. Similarly evaluated expression profiles of CD4+CD8+ CD69– thymocytes from the mutant A238L transgenic mice were comparable to those of wild type mice. These features, together with the demonstration of (mono-)oligoclonality, suggest a transgene-NFAT-dependent transformation yielding a lymphoma with a phenotype reminiscent of some acute lymphoblastic lymphomas

    Direct Visualization of Peptide/MHC Complexes at the Surface and in the Intracellular Compartments of Cells Infected In Vivo by Leishmania major

    Get PDF
    Protozoa and bacteria infect various types of phagocytic cells including macrophages, monocytes, dendritic cells and eosinophils. However, it is not clear which of these cells process and present microbial antigens in vivo and in which cellular compartments parasite peptides are loaded onto Major Histocompatibility Complex molecules. To address these issues, we have infected susceptible BALB/c (H-2d) mice with a recombinant Leishmania major parasite expressing a fluorescent tracer. To directly visualize the antigen presenting cells that present parasite-derived peptides to CD4+ T cells, we have generated a monoclonal antibody that reacts to an antigenic peptide derived from the parasite LACK antigen bound to I-Ad Major Histocompatibility Complex class II molecule. Immunogold electron microscopic analysis of in vivo infected cells showed that intracellular I-Ad/LACK complexes were present in the membrane of amastigote-containing phagosomes in dendritic cells, eosinophils and macrophages/monocytes. In both dendritic cells and macrophages, these complexes were also present in smaller vesicles that did not contain amastigote. The presence of I-Ad/LACK complexes at the surface of dendritic cells, but neither on the plasma membrane of macrophages nor eosinophils was independently confirmed by flow cytometry and by incubating sorted phagocytes with highly sensitive LACK-specific hybridomas. Altogether, our results suggest that peptides derived from Leishmania proteins are loaded onto Major Histocompatibility Complex class II molecules in the phagosomes of infected phagocytes. Although these complexes are transported to the cell surface in dendritic cells, therefore allowing the stimulation of parasite-specific CD4+ T cells, this does not occur in other phagocytic cells. To our knowledge, this is the first study in which Major Histocompatibility Complex class II molecules bound to peptides derived from a parasite protein have been visualized within and at the surface of cells that were infected in vivo
    • 

    corecore