127 research outputs found

    Submersed sensing electrode used in fuel-cell type hydrogen detector

    Get PDF
    Electrode has silicone rubber diffusion barrier with fixed permeation constant for hydrogen. Barrier controls flow of hydrogen to anode and Faraday relationship establishes upper limit for current through cell. Electrode fabrication is described

    Improved fuel-cell-type hydrogen sensor

    Get PDF
    Modified hydrogen sensor replaces oxygen cathode with a cathode consisting of a sealed paste of gold hydroxide and a pure gold current collector. The net reaction which occurs during cell operation is the reduction of the gold hydroxide to gold and water, with a half-cell potential of 1.4 volts

    Regenerable adsorbent study

    Get PDF
    Thin film solid regenerable adsorbent for use with sorber plate to determine gase

    Consistency checks of results from a Monte Carlo code intercomparison for emitted electron spectra and energy deposition around a single gold nanoparticle irradiated by X-rays

    Get PDF
    Organized by the European Radiation Dosimetry Group (EURADOS), a Monte Carlo code intercomparison exercise was conducted where participants simulated the emitted electron spectra and energy deposition around a single gold nanoparticle (GNP) irradiated by X-rays. In the exercise, the participants scored energy imparted in concentric spherical shells around a spherical volume filled with gold or water as well as the spectral distribution of electrons leaving the GNP. Initially, only the ratio of energy deposition with and without GNP was to be reported. During the evaluation of the exercise, however, the data for energy deposition in the presence and absence of the GNP were also requested. A GNP size of 50 nm and 100 nm diameter was considered as well as two different X-ray spectra (50 kVp and 100 kVp). This introduced a redundancy that can be used to cross-validate the internal consistency of the simulation results. In this work, evaluation of the reported results is presented in terms of integral quantities that can be benchmarked against values obtained from physical properties of the radiation spectra and materials involved. The impact of different interaction cross-section datasets and their implementation in the different Monte Carlo codes is also discussed

    Homogeneous Bubble Nucleation driven by local hot spots: a Molecular Dynamics Study

    Full text link
    We report a Molecular Dynamics study of homogenous bubble nucleation in a Lennard-Jones fluid. The rate of bubble nucleation is estimated using forward-flux sampling (FFS). We find that cavitation starts with compact bubbles rather than with ramified structures as had been suggested by Shen and Debenedetti (J. Chem. Phys. 111:3581, 1999). Our estimate of the bubble-nucleation rate is higher than predicted on the basis of Classical Nucleation Theory (CNT). Our simulations show that local temperature fluctuations correlate strongly with subsequent bubble formation - this mechanism is not taken into account in CNT

    Imaging Molecular Structure through Femtosecond Photoelectron Diffraction on Aligned and Oriented Gas-Phase Molecules

    Get PDF
    This paper gives an account of our progress towards performing femtosecond time-resolved photoelectron diffraction on gas-phase molecules in a pump-probe setup combining optical lasers and an X-ray Free-Electron Laser. We present results of two experiments aimed at measuring photoelectron angular distributions of laser-aligned 1-ethynyl-4-fluorobenzene (C8H5F) and dissociating, laseraligned 1,4-dibromobenzene (C6H4Br2) molecules and discuss them in the larger context of photoelectron diffraction on gas-phase molecules. We also show how the strong nanosecond laser pulse used for adiabatically laser-aligning the molecules influences the measured electron and ion spectra and angular distributions, and discuss how this may affect the outcome of future time-resolved photoelectron diffraction experiments.Comment: 24 pages, 10 figures, Faraday Discussions 17

    A phase 1b/pharmacokinetic trial of PTC299, a novel post-transcriptional VEGF inhibitor, for AIDS-related Kaposi’s sarcoma: AIDS Malignancy Consortium trial 059

    Get PDF
    Vascular endothelial growth factor (VEGF) plays an important role in Kaposi’s sarcoma (KS). We administered PTC299, a post-transcriptional inhibitor of pathogenic VEGF, to persons with HIV-related KS. Seventeen participants received three different doses of PTC299. Adverse events typically observed with VEGF-inhibition were absent. Three participants had partial tumor responses and 11 had stable disease. There were no differences in exposure to PTC299 by antiretroviral regimen. Serum VEGF, but not KSHV DNA, decreased on treatment. Given redundancies in the VEGF feedback loop, future trials should consider combining PTC299 with agents that inhibit different pathways implicated in KS and KSHV proliferation

    towards time-resolved imaging of molecular structure

    Get PDF
    We demonstrate an experimental method to record snapshot diffraction images of polyatomic gas-phase molecules, which can, in a next step, be used to probe time-dependent changes in the molecular geometry during photochemical reactions with femtosecond temporal and angstrom spatial resolution. Adiabatically laser-aligned 1-ethynyl-4-fluorobenzene (C8H5F) molecules were imaged by diffraction of photoelectrons with kinetic energies between 31 and 62 eV, created from core ionization of the fluorine (1s) level by ≈80 fs x-ray free-electron-laser pulses. Comparison of the experimental photoelectron angular distributions with density functional theory calculations allows relating the diffraction images to the molecular structure

    Imaging single cells in a beam of live cyanobacteria with an X-ray laser

    Get PDF
    There exists a conspicuous gap of knowledge about the organization of life at mesoscopic levels. Ultra-fast coherent diffractive imaging with X-ray free-electron lasers can probe structures at the relevant length scales and may reach sub-nanometer resolution on micron-sized living cells. Here we show that we can introduce a beam of aerosolised cyanobacteria into the focus of the Linac Coherent Light Source and record diffraction patterns from individual living cells at very low noise levels and at high hit ratios. We obtain two-dimensional projection images directly from the diffraction patterns, and present the results as synthetic X-ray Nomarski images calculated from the complex-valued reconstructions. We further demonstrate that it is possible to record diffraction data to nanometer resolution on live cells with X-ray lasers. Extension to sub-nanometer resolution is within reach, although improvements in pulse parameters and X-ray area detectors will be necessary to unlock this potential
    • …
    corecore