502 research outputs found

    An early Little Ice Age brackish water invasion along the south coast of the Caspian Sea (sediment of Langarud wetland) and its wider impacts on environment and people

    Get PDF
    Caspian Sea level has undergone significant changes through time with major impacts not only on the surrounding coasts, but also offshore. This study reports a brackish water invasion on the southern coast of the Caspian Sea constructed from a multi-proxy analysis of sediment retrieved from the Langarud wetland. The ground surface level of wetland is >6 m higher than the current Caspian Sea level (at -27.41 m in 2014) and located >11 km far from the coast. A sequence covering the last millennium was dated by three radiocarbon dates. The results from this new study suggest that Caspian Sea level rose up to at least -21.44 m (i.e. >6 m above the present water level) during the early Little Ice Age. Although previous studies in the southern coast of the Caspian Sea have detected a high-stand during the Little Ice Age period, this study presents the first evidence that this high-stand reached so far inland and at such a high altitude. Moreover, it confirms one of the very few earlier estimates of a high-stand at -21 m for the second half of the 14th century. The effects of this large-scale brackish water invasion on soil properties would have caused severe disruption to regional agriculture, thereby destabilizing local dynasties and facilitating a rapid Turko-Mongol expansion of Tamerlane’s armies from the east.N Ghasemi (INIOAS), V Jahani (Gilan Province Cultural Heritage and Tourism Organisation) and A Naqinezhad (University of Mazandaran), INQUA QuickLakeH project (no. 1227) and to the European project Marie Curie, CLIMSEAS-PIRSES-GA-2009-24751

    Dating of the oldest continental sediments from the Himalayan foreland basin

    Get PDF
    A detailed knowledge of Himalayan development is important for our wider understanding of several global processes, ranging from models of plateau uplift to changes in oceanic chemistry and climate(1-4). Continental sediments 55 Myr old found in a foreland basin in Pakistan(5) are, by more than 20 Myr, the oldest deposits thought to have been eroded from the Himalayan metamorphic mountain belt. This constraint on when erosion began has influenced models of the timing and diachrony of the India-Eurasia collision(6-8), timing and mechanisms of exhumation(9,10) and uplift(11), as well as our general understanding of foreland basin dynamics(12). But the depositional age of these basin sediments was based on biostratigraphy from four intercalated marl units(5). Here we present dates of 257 detrital grains of white mica from this succession, using the Ar-40-(39) Ar method, and find that the largest concentration of ages are at 36-40 Myr. These dates are incompatible with the biostratigraphy unless the mineral ages have been reset, a possibility that we reject on the basis of a number of lines of evidence. A more detailed mapping of this formation suggests that the marl units are structurally intercalated with the continental sediments and accordingly that biostratigraphy cannot be used to date the clastic succession. The oldest continental foreland basin sediments containing metamorphic detritus eroded from the Himalaya orogeny therefore seem to be at least 15-20 Myr younger than previously believed, and models based on the older age must be re-evaluated

    Surface water temperature, salinity, and density changes in the northeast Atlantic during the last 45,000 years: Heinrich events, deep water formation, and climatic rebounds

    Get PDF
    We developed a new method to calculate sea surface salinities (SSS) and densities (SSD) from planktonic foraminiferal delta(18)O and sea surface temperatures (SST) as determined from planktonic foraminiferal species abundances. SST, SSS, and SSD records were calculated for the last 45,000 years for Biogeochemical Oceanic Flux Study (BOFS) cores 5K and 8K recovered from the northeast Atlantic. The strongest feature is the dramatic drop in all three parameters during the Heinrich ''ice-rafting'' events. We modelled the possibility of deepwater formation in the northeast Atlantic from the SSD records, by assuming that the surface waters at our sites cooled as they flowed further north. Comparison with modelled North Atlantic deepwater densities indicates that there could have been periods of deepwater formation between 45,000 and 30,000 C-14 years B.P. (interrupted by iceberg meltwater input of Heinrich event 3 and 4, at 27,000 and 38,000 C-14 years B.P.) and during the Holocene. No amount of cooling in the northeast Atlantic between 30,000 and 13,000 years could cause deep water to form, because of the low salinities resulting from the high meltwater inputs from icebergs. Our records indicate that after each Heinrich event there were periods of climatic rebound, with milder conditions persisting for up to 2000 years, as indicated by the presence of warmer and more saline water masses. After these warm periods conditions returned to average glacial levels. These short term cold and warm episodes in the northeast Atlantic ate superimposed on the general trend towards colder conditions of the Last Glacial Maximum (LGM). Heinrich event 1 appears to be unique as it occurs as insolation rose and was coeval with the initial melting of the Fennoscandian ice sheet. We propose that meltwater input of Heinrich event 1 significantly reduced North Atlantic Deep Water formation reducing the heat exchange between the low and high latitudes, thus delaying deglaciation by about 1500 radiocarbon years (2000 calendar years)

    Polarized localization of phosphatidylserine in the endothelium regulates Kir2.1

    Get PDF
    Lipid regulation of ion channels is largely explored using in silico modeling with minimal experimentation in intact tissue; thus, the functional consequences of these predicted lipid-channel interactions within native cellular environments remain elusive. The goal of this study is to investigate how lipid regulation of endothelial Kir2.1 - an inwardly rectifying potassium channel that regulates membrane hyperpolarization - contributes to vasodilation in resistance arteries. First, we show that phosphatidylserine (PS) localizes to a specific subpopulation of myoendothelial junctions (MEJs), crucial signaling microdomains that regulate vasodilation in resistance arteries, and in silico data have implied that PS may compete with phosphatidylinositol 4,5-bisphosphate (PIP2) binding on Kir2.1. We found that Kir2.1-MEJs also contained PS, possibly indicating an interaction where PS regulates Kir2.1. Electrophysiology experiments on HEK cells demonstrate that PS blocks PIP2 activation of Kir2.1 and that addition of exogenous PS blocks PIP2-mediated Kir2.1 vasodilation in resistance arteries. Using a mouse model lacking canonical MEJs in resistance arteries (Elnfl/fl/Cdh5-Cre), PS localization in endothelium was disrupted and PIP2 activation of Kir2.1 was significantly increased. Taken together, our data suggest that PS enrichment to MEJs inhibits PIP2-mediated activation of Kir2.1 to tightly regulate changes in arterial diameter, and they demonstrate that the intracellular lipid localization within the endothelium is an important determinant of vascular function

    The Atlantic Ocean at the last glacial maximum: 1. Objective mapping of the GLAMAP sea-surface conditions

    Get PDF
    Recent efforts of the German paleoceanographic community have resulted in a unique data set of reconstructed sea-surface temperature for the Atlantic Ocean during the Last Glacial Maximum, plus estimates for the extents of glacial sea ice. Unlike prior attempts, the contributing research groups based their data on a common definition of the Last Glacial Maximum chronozone and used the same modern reference data for calibrating the different transfer techniques. Furthermore, the number of processed sediment cores was vastly increased. Thus the new data is a significant advance not only with respect to quality, but also to quantity. We integrate these new data and provide monthly data sets of global sea-surface temperature and ice cover, objectively interpolated onto a regular 1°x1° grid, suitable for forcing or validating numerical ocean and atmosphere models. This set is compared to an existing subjective interpolation of the same base data, in part by employing an ocean circulation model. For the latter purpose, we reconstruct sea surface salinity from the new temperature data and the available oxygen isotope measurements

    Methodological approaches to determining the marine radiocarbon reservoir effect

    Get PDF
    The marine radiocarbon reservoir effect is an offset in 14C age between contemporaneous organisms from the terrestrial environment and organisms that derive their carbon from the marine environment. Quantification of this effect is of crucial importance for correct calibration of the <sup>14</sup>C ages of marine-influenced samples to the calendrical timescale. This is fundamental to the construction of archaeological and palaeoenvironmental chronologies when such samples are employed in <sup>14</sup>C analysis. Quantitative measurements of temporal variations in regional marine reservoir ages also have the potential to be used as a measure of process changes within Earth surface systems, due to their link with climatic and oceanic changes. The various approaches to quantification of the marine radiocarbon reservoir effect are assessed, focusing particularly on the North Atlantic Ocean. Currently, the global average marine reservoir age of surface waters, R(t), is c. 400 radiocarbon years; however, regional values deviate from this as a function of climate and oceanic circulation systems. These local deviations from R(t) are expressed as +R values. Hence, polar waters exhibit greater reservoir ages (δR = c. +400 to +800 <sup>14</sup>C y) than equatorial waters (δR = c. 0 <sup>14</sup>C y). Observed temporal variations in δR appear to reflect climatic and oceanographic changes. We assess three approaches to quantification of marine reservoir effects using known age samples (from museum collections), tephra isochrones (present onshore/offshore) and paired marine/terrestrial samples (from the same context in, for example, archaeological sites). The strengths and limitations of these approaches are evaluated using examples from the North Atlantic region. It is proposed that, with a suitable protocol, accelerator mass spectrometry (AMS) measurements on paired, short-lived, single entity marine and terrestrial samples from archaeological deposits is the most promising approach to constraining changes over at least the last 5 ky BP

    Architecture of North Atlantic contourite drifts modified by transient circulation of the Icelandic mantle plume

    Get PDF
    Overflow of Northern Component Water, the precursor of North Atlantic Deep Water, appears to have varied during Neogene times. It has been suggested that this variation is moderated by transient behavior of the Icelandic mantle plume, which has influenced North Atlantic bathymetry through time. Thus pathways and intensities of bottom currents that control deposition of contourite drifts could be affected by mantle processes. Here, we present regional seismic reflection profiles that cross sedimentary accumulations (Björn, Gardar, Eirik and Hatton Drifts). Prominent reflections were mapped and calibrated using a combination of boreholes and legacy seismic profiles. Interpreted seismic profiles were used to reconstruct solid sedimentation rates. Björn Drift began to accumulate in late Miocene times. Its average sedimentation rate decreased at ∼2.5 Ma and increased again at ∼0.75 Ma. In contrast, Eirik Drift started to accumulate in early Miocene times. Its average sedimentation rate increased at ∼5.5 Ma and decreased at ∼2.2 Ma. In both cases, there is a good correlation between sedimentation rates, inferred Northern Component Water overflow, and the variation of Icelandic plume temperature independently obtained from the geometry of diachronous V-shaped ridges. Between 5.5 and 2.5 Ma, the plume cooled, which probably caused subsidence of the Greenland-Iceland-Scotland Ridge, allowing drift accumulation to increase. When the plume became hotter at 2.5 Ma, drift accumulation rate fell. We infer that deep-water current strength is modulated by fluctuating dynamic support of the Greenland-Scotland Ridge. Our results highlight the potential link between mantle convective processes and ocean circulationThis work is partly supported by Natural Environment Research Council Grant NE/G007632/1. RPT was supported by the University of Cambridge Girdler Fund and by BP Exploration.This is the final version of the article. It first appeared from Wiley via http://dx.doi.org/10.1002/2015GC00594

    Stability of North Atlantic water masses in face of pronounced climate variability during the Pleistocene

    Get PDF
    Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 19 (2004): PA2008, doi:10.1029/2003PA000921.Geochemical profiles from the North Atlantic Ocean suggest that the vertical δ13C structure of the water column at intermediate depths did not change significantly between glacial and interglacial time over much of the Pleistocene, despite large changes in ice volume and iceberg delivery from nearby landmasses. The most anomalous δ13C profiles are from the extreme interglaciations of the late Pleistocene. This compilation of data suggests that, unlike today (an extreme interglaciation), the two primary sources of northern deep water, Norwegian-Greenland Sea and Labrador Sea/subpolar North Atlantic, had different characteristic δ13C values over most of the Pleistocene. We speculate that the current open sea ice conditions in the Norwegian-Greenland Sea are a relatively rare occurrence and that the high-δ13C deep water that forms in this region today is geologically unusual. If northern source deep waters can have highly variable δ13C, then this likelihood must be considered when inferring past circulation changes from benthic δ13C records.National Science Foundation grants OCE-0118005 and OCE-0118001, which supported MER and DWO
    corecore