145 research outputs found

    Hospital-acquired bloodstream infections in critically ill cirrhotic patients: a post-hoc analysis of the EUROBACT-2 international cohort study

    Get PDF
    Bloodstream infections; Cirrhotic patientsInfecciones del torrente sanguíneo; Pacientes cirróticos críticosInfeccions del torrent sanguini; Pacients cirròtics críticsBackground: Hospital-acquired bloodstream infections are common in the intensive care unit (ICU) and have a high mortality rate. Patients with cirrhosis are especially susceptible to infections, yet there is a knowledge gap in the epidemiological distinctions in hospital-acquired bloodstream infections between cirrhotic and non-cirrhotic patients in the ICU. It has been suggested that cirrhotic patients, present a trend towards more gram-positive infections, and especially enterococcal infections. This study aims to describe epidemiological differences in hospital-acquired bloodstream infections between cirrhotic and non-cirrhotic patients hospitalized in the ICU regarding infection sources, microorganisms and mortality. Methods: Using prospective Eurobact-2 international cohort study data, we compared hospital-acquired bloodstream infections sources and microorganisms in cirrhotic and non-cirrhotic patients. The association between Enterococcus faecium and cirrhosis was studied using a multivariable mixed logistic regression. The association between cirrhosis and mortality was assessed by a multivariable frailty Cox model. Results: Among the 1059 hospital-acquired bloodstream infections patients included from 101 centers, 160 had cirrhosis. Hospital-acquired bloodstream infection source in cirrhotic patients was primarily abdominal (35.6%), while it was pulmonary (18.9%) for non-cirrhotic (p < 0.01). Gram-positive hospital-acquired bloodstream infections accounted for 42.3% in cirrhotic patients compared to 33.2% in non-cirrhotic patients (p = 0.02). Hospital-acquired bloodstream infections in cirrhotic patients were most frequently caused by Klebsiella spp (16.5%), coagulase-negative Staphylococci (13.7%) and E. faecium (11.5%). E. faecium bacteremia was more frequent in cirrhotic patients (11.5% versus 4.5%, p < 0.01). After adjusting for possible confounding factors, cirrhosis was associated with higher E. faecium hospital-acquired bloodstream infections risk (Odds ratio 2.5, 95% CI 1.3-4.5, p < 0.01). Cirrhotic patients had increased mortality compared to non-cirrhotic patients (Hazard Ratio 1.3, 95% CI 1.01-1.7, p = 0.045). Conclusions: Critically ill cirrhotic patients with hospital-acquired bloodstream infections exhibit distinct epidemiology, with more Gram-positive infections and particularly Enterococcus faecium.The Eurobact-2 database received research grants from the European Society of Intensive Care Medicine (ESICM), the European Society of Clinical Microbiology and Infectious Diseases (ESCMID) study Group for Infections in Critically Ill Patients (ESGCIP), the Norva Dahlia foundation and the Redcliffe Hospital Private Practice Trust Fund. This report was prepared with no specific funding. Open access funding provided by University of Genev

    Different epidemiology of bloodstream infections in COVID-19 compared to non-COVID-19 critically ill patients: a descriptive analysis of the Eurobact II study

    Get PDF
    Bloodstream infection; COVID-19; EnterococcusInfección del torrente sanguíneo; COVID-19; EnterococoInfecció del torrent sanguini; COVID-19; EnterococBackground The study aimed to describe the epidemiology and outcomes of hospital-acquired bloodstream infections (HABSIs) between COVID-19 and non-COVID-19 critically ill patients. Methods We used data from the Eurobact II study, a prospective observational multicontinental cohort study on HABSI treated in ICU. For the current analysis, we selected centers that included both COVID-19 and non-COVID-19 critically ill patients. We performed descriptive statistics between COVID-19 and non-COVID-19 in terms of patients’ characteristics, source of infection and microorganism distribution. We studied the association between COVID-19 status and mortality using multivariable fragility Cox models. Results A total of 53 centers from 19 countries over the 5 continents were eligible. Overall, 829 patients (median age 65 years [IQR 55; 74]; male, n = 538 [64.9%]) were treated for a HABSI. Included patients comprised 252 (30.4%) COVID-19 and 577 (69.6%) non-COVID-19 patients. The time interval between hospital admission and HABSI was similar between both groups. Respiratory sources (40.1 vs. 26.0%, p < 0.0001) and primary HABSI (25.4% vs. 17.2%, p = 0.006) were more frequent in COVID-19 patients. COVID-19 patients had more often enterococcal (20.5% vs. 9%) and Acinetobacter spp. (18.8% vs. 13.6%) HABSIs. Bacteremic COVID-19 patients had an increased mortality hazard ratio (HR) versus non-COVID-19 patients (HR 1.91, 95% CI 1.49–2.45). Conclusions We showed that the epidemiology of HABSI differed between COVID-19 and non-COVID-19 patients. Enterococcal HABSI predominated in COVID-19 patients. COVID-19 patients with HABSI had elevated risk of mortality. Trial registration ClinicalTrials.org number NCT03937245. Registered 3 May 2019.Research grants were obtained from the European society of Intensive Care Medicine (ESICM) and the European Society of Clinical Microbiology and Infectious Diseases (ESCMID) study Group for Infections in Critically Ill Patients (ESGCIP), the Norva Dahlia foundation and the Redcliffe Hospital Private Practice Trust Fund. Dr. Buetti received a grant from the Swiss National Science Foundation (Grant Number: P4P4PM_194449). The study was endorsed by the critically ill group of the ESCMID (ESGCIP) and by the infection group of the ESICM with scientific input of the OUTCOMEREA network

    Prognostic Impact of Paraneoplastic Cushing’s Syndrome in Small-Cell Lung Cancer

    Get PDF
    Introduction:Paraneoplastic Cushing’s syndrome (CushingPS) in small-cell lung cancer is rare but severe.Methods:We studied 383 patients with small-cell lung cancer diagnosed between 1998 and 2012. Among them, 23 patients had CushingPS, 56 had other paraneoplastic syndrome (OtherPS), and 304 had no paraneoplastic syndrome (NoPS).Results:After comparison of the three groups, we observed that CushingPS patients had more extensive disease: 82.6% versus 67.8% versus 53.3% (p = 0.005), respectively, with more than two metastatic sites: 63.2% versus 15.8% and 24.1% (p ⩽ 0.001), a higher World Health Organization performance status (2–4): 73.9% versus 57.1% versus 43.7% (p = 0.006), greater weight loss (≥10%): 47.8% versus 33.9% versus 16.4% (p ⩽ 0.001), reduced objective response to first-line treatment: 47.6% versus 74.1% versus 71.1% (p = 0.04), and poorer sensitivity to first-line treatment: 19% versus 38.9% versus 48.6% (p = 0.01). NoPS patients, with World Health Organization performance status of 3–4, had extensive disease at diagnosis, with response, sensitivity to first-line treatment, and survival similar to the CushingPS group. At relapse, the CushingPS group had no objective response to second-line treatment versus 25% versus 42.8% in OtherPS and NoPS groups, respectively (p = 0.005). The median survival of CushingPS patients was 6.6 months versus 9.2 months for OtherPS and 13.1 months for NoPS patients (p ⩽ 0.001). CushingPS is a prognostic factor of death (hazard ratio, 2.31; p ⩽ 0.001).Conclusion:CushingPS is the worst form of the paraneoplastic syndromes with particularly extensive tumors. Reduced objective response and sensitivity to first-line treatment and no response to second-line treatment suggest starting palliative care early at first line and exclusively at relapse

    Evidence of historical seismicity and volcanism in the Armenian Highland (from Armenian and other sources)

    Get PDF
    This work presents a summary on the development of studies of historical earthquakes in Armenia and adjacent parts of Turkey and Iran. Since ancient times, this region has been an arena where active geodynamic and seismic history intermingled with no less active and dynamic evolution of human cultures and societies. A long-term historical record in this region beginning as early as the 8th century B.C. provides abundant evidence that can make an inestimable contribution to studies of historical seismicity and volcanism in the area. We discuss the main research methodology and sources used, and dwell on the principal catalogues of historical earthquakes compiled to date

    Different epidemiology of bloodstream infections in COVID-19 compared to non-COVID-19 critically ill patients: A descriptive analysis of the Eurobact II study

    Get PDF
    Background: The study aimed to describe the epidemiology and outcomes of hospital-acquired bloodstream infections (HABSIs) between COVID-19 and non-COVID-19 critically ill patients. Methods: We used data from the Eurobact II study, a prospective observational multicontinental cohort study on HABSI treated in ICU. For the current analysis, we selected centers that included both COVID-19 and non-COVID-19 critically ill patients. We performed descriptive statistics between COVID-19 and non-COVID-19 in terms of patients’ characteristics, source of infection and microorganism distribution. We studied the association between COVID-19 status and mortality using multivariable fragility Cox models. Results: A total of 53 centers from 19 countries over the 5 continents were eligible. Overall, 829 patients (median age 65 years [IQR 55; 74]; male, n = 538 [64.9%]) were treated for a HABSI. Included patients comprised 252 (30.4%) COVID-19 and 577 (69.6%) non-COVID-19 patients. The time interval between hospital admission and HABSI was similar between both groups. Respiratory sources (40.1 vs. 26.0%, p < 0.0001) and primary HABSI (25.4% vs. 17.2%, p = 0.006) were more frequent in COVID-19 patients. COVID-19 patients had more often enterococcal (20.5% vs. 9%) and Acinetobacter spp. (18.8% vs. 13.6%) HABSIs. Bacteremic COVID-19 patients had an increased mortality hazard ratio (HR) versus non-COVID-19 patients (HR 1.91, 95% CI 1.49–2.45). Conclusions: We showed that the epidemiology of HABSI differed between COVID-19 and non-COVID-19 patients. Enterococcal HABSI predominated in COVID-19 patients. COVID-19 patients with HABSI had elevated risk of mortality. Trial registration ClinicalTrials.org number NCT03937245. Registered 3 May 2019

    Data-driven multiscale dynamical framework to control a pandemic evolution with non-pharmaceutical interventions.

    No full text
    Before the availability of vaccines, many countries have resorted multiple times to drastic social restrictions to prevent saturation of their health care system, and to regain control over an otherwise exponentially increasing COVID-19 pandemic. With the advent of data-sharing, computational approaches are key to efficiently control a pandemic with non-pharmaceutical interventions (NPIs). Here we develop a data-driven computational framework based on a time discrete and age-stratified compartmental model to control a pandemic evolution inside and outside hospitals in a constantly changing environment with NPIs. Besides the calendrical time, we introduce a second time-scale for the infection history, which allows for non-exponential transition probabilities. We develop inference methods and feedback procedures to successively recalibrate model parameters as new data becomes available. As a showcase, we calibrate the framework to study the pandemic evolution inside and outside hospitals in France until February 2021. We combine national hospitalization statistics from governmental websites with clinical data from a single hospital to calibrate hospitalization parameters. We infer changes in social contact matrices as a function of NPIs from positive testing and new hospitalization data. We use simulations to infer hidden pandemic properties such as the fraction of infected population, the hospitalisation probability, or the infection fatality ratio. We show how reproduction numbers and herd immunity levels depend on the underlying social dynamics

    Risk of infections in intravascular catheters in situ for more than 10 days: a post hoc analysis of randomized controlled trials

    No full text
    Objectives: We aimed to describe the infectious risk during the dwell time for different catheter types. Furthermore, we wanted to identify risk factors for infections from catheters in place for >10 days.Methods: We performed a post hoc analysis using prospectively collected data from four randomized controlled trials. First, we evaluated the infectious risk after 10 days of analysing the significance of the interaction between dwell time and catheter type in a Cox model. Second, we investigated risk factors for infection in catheters in place for >10 days using multivariable marginal Cox models.Results: We included 15 036 intravascular catheters from 24 intensive care units. Infections occurred in 46 (0.7%) of 6298 arterial catheters (ACs), 62 (1.0%) of 6036 central venous catheters (CVCs) and 47 (1.7%) of 2702 short-term dialysis catheters (DCs). The interaction between dwell time beyond 10 days and catheter type was significant for CVCs (p 0.008) and DCs (p 10 days for further analyses. In the multivariable marginal Cox model, we observed an increased hazard ratio (HR) for infection for femoral CVC (HR, 6.33; 95% CI, 1.99-20.09), jugular CVC (HR, 2.82; 95% CI, 1.13-7.07), femoral DC (HR, 4.53; 95% CI, 1.54-13.33) and jugular DC (HR, 4.50; 95% CI, 1.42-14.21) compared with subclavian insertions.Discussion: We showed that the risk of catheter infection for CVCs and DCs increased 10 days after insertion, thus suggesting routine replacement for nonsubclavian catheters in situ for >10 days
    • …
    corecore