7 research outputs found

    Leaf and stem physiological responses to summer and winter extremes of woody species across temperate ecosystems

    Get PDF
    © 2014 The Authors. Winter cold limits temperate plant performance, as does summer water stress in drought-prone ecosystems. The relative impact of seasonal extremes on plant performance has received considerable attention for individual systems. An integrated study compiling the existing literature was needed to identify overall trends. First, we conducted a meta-analysis of the impacts of summer and winter on ecophysiology for three woody plant functional types (winter deciduous angiosperms, evergreen angiosperms and conifers), including data for 210 records from 75 studies of ecosystems with and without summer drought across the temperate zone. Second, we tested predictions by conducting a case study in a drought-prone Mediterranean ecosystem subject to winter freezing. As indicators of physiological response of leaves and xylem to seasonal stress, we focused on stomatal conductance (gs), percent loss of stem xylem hydraulic conductivity (PLC) and photochemical efficiency of photosystem II (Fv/Fm). Our meta-analysis showed that in ecosystems without summer drought, gs was higher during summer than winter. By contrast, in drought-prone ecosystems many species maintained open stomata during winter, with potential strong consequences for plant carbon gain over the year. Further, PLC tended to increase and Fv/Fm to decrease from summer to winter for most functional types and ecosystems due to low temperatures. Overall, deciduous angiosperms were most sensitive to climatic stress. Leaf gas exchange and stem xylem hydraulics showed a coordinated seasonal response at ecosystems without summer drought. In our Mediterranean site subjected to winter freezing the species showed similar responses to those typically found for ecosystems without summer drought. We conclude that winter stress is most extreme for systems without summer drought and systems with summer drought and winter freezing, and less extreme for drought-prone systems without freezing. In all cases the evergreen species show less pronounced seasonal responses in both leaves and stems than deciduous species.Th is research was supported by the Spanish Ministry of Economy and Competitiveness with the grants FPI (CGL2007-66066-C04-02), Consolider Montes (CSD2008 00040) and VULGLO (CGL2010 22180 C03 03), and by the Community of Madrid grant REMEDINAL 2 (CM S2009 AMB 1783) and National Science Foundation Grant no. 0546784.Peer Reviewe

    Effects of Competition from the Invasive Cordgrass Spartina densiflora on Native Atriplex

    No full text
    Abstract — Invasion by the South American cordgrass Spartina densiflora Brongn. in European salt marshes is causing concern about potential impacts to native plant communities., S. densiflora colonization of mid-marsh habitats may be slowed by native Atriplex portulacoides L., but the mechanism behind this negative interaction is not known. The aim of this work was to study the establishment and growth response of S. densiflora seedlings growing in a competitive environment with mature A. portulacoides plants in controlled greenhouse conditions. With this aim we measured establishment, growth, foliar nutrients, and photosynthetic pigments of S. densiflora plants grown with and without A. portulacoides. Results showed that S. densiflora seedlings readily established in mature stands of A. portulacoides. Every Spartina clump growing with Atriplex survived, producing fewer tillers with similar heights than when growing without competition, which was reflected on lower above-ground biomass. These results indicated that S. densiflora was affected at the above-ground level by the interspecific competition with Atriplex, but the invasive cordgrass was able to keep similar below-ground biomass with and without competition, resulting in a decrease of below-ground biomass of Atriplex when competing with Spartina. Our results in greenhouse controlled conditions were in agreement with our field observations where S. densiflora plants have been observed growing within A. portulacoides monospecific communities

    Wrack burial reduces germination and establishment of the invasive cordgrass Spartina densiflora

    Get PDF
    Germination and emergence of halophytes may decrease significantly by seed burial in dead plant material, or wrack, which is common and abundant in tidal marshes. The effects of plant debris (wrack) burial on seed germination and seedling establishment of Spartina densiflora, an invasive cordgrass, were studied under greenhouse conditions and compared with field observations. Five wrack burial depths were applied: control without wrack, 1 cm (1235 ± 92 g DW wrack m-2), 2 cm (3266 ± 13 g DW m-2), 4 cm (4213 ± 277 g DW m-2), and 8 cm (6138 ± 227 g DW m-2). Sediment pH, electrical conductivity, redox potential and temperature were recorded. Quiescence increased with wrack load up to ~20% at 8 cm deep. Germination decreased with wrack load from 96% to 14%, which could be related with anoxic conditions under the debris since sediment redox potential was as low as -83 ± 7 mV at 8 cm. Germination percentage increased and quiescent and dormant percentages decreased at higher daily sediment temperatures and with higher daily temperature fluctuations, conditions that were recorded without or under low loads of wrack. Spartina densiflora did not show primary dormancy, but its seeds entered into a non-deep physiological dormancy below 1 cm deep in plant debris. The establishment of S. densiflora seedlings was also greatly reduced by wrack burial since only 6 seedlings (11 ± 5 % of germinated seeds) emerged above plant debris from 1 cm and all seedlings died from deeper than 1 cm. S. densiflora seedling development was also reduced by wrack burial. The inverse relationship between germination and emergence of S. densiflora with wrack burial recorded in our study is useful to predict its invasion dynamics and to plan the management of invaded marshes

    Tree vigour influences secondary growth but not responsiveness to climatic variability in Holm oak

    No full text
    Many tree species from Mediterranean regions have started to show increased rates of crown defoliation, reduced growth, and dieback associated with the increase in temperatures and changes in the frequency and intensity of drought events experienced during the last decades. In this regard, Quercus ilex L. subsp. ballota [Desf.] (Holm oak), despite being a drought-tolerant species widely distributed in the Mediterranean basin, it has recently started to show acute signs of decline, extended areas from Spain being affected. However, few studies have assessed the role of climatic variability (i.e., temperature, precipitation, and drought) on the decline and resilience of Holm oak. Here, we measured secondary growth of seventy Holm oaks from a coppice stand located in central Spain. Sampled trees had different stages of decline, so they were classified into four vigour groups considering their crown foliar lost: healthy (0%), low defoliated (<25%), highly defoliated (25–70%), and dying (70–100%). Our results showed that during the study period (1980–2009) the highly defoliated and dying Holm oaks grew significantly less than their healthy and low defoliated neighbours, suggesting permanent growth reduction in the less vigorous individuals. Despite these differences, all four vigour groups showed similar responses to climatic variations, especially during winter and late spring – early summer seasons, and similar resilience after severe drought events, managing to significantly recover to pre-drought growth rates after only two years. Our findings, hence, illustrate that tree vigour influences secondary growth but not responsiveness to climatic variability in Holm oak. Still, as reduced growth rates are frequently associated with the process of tree mortality, we conclude that the less vigorous Holm oaks might not be able to cope with future water stress conditions, leading to increased mortality rates among this emblematic Mediterranean species.This work was supported by the Spanish Ministry of Economy and Competitiveness (MINECO) with the project VERONICA (CGL2013-42271-P), and by the Spanish Ministry for Innovation and Science with the grant Consolider-Montes (CSD2008_00040)

    Nitric oxide regulation of leaf phosphoenolpyruvate carboxylase-kinase activity: implication in sorghum responses to salinity

    Get PDF
    Nitric oxide (NO) is a signaling molecule that mediates many plant responses to biotic and abiotic stresses, including salt stress. Interestingly, salinity increases NO production selectively in mesophyll cells of sorghum leaves, where photosynthetic C4 phosphoenolpyruvate carboxylase (C4 PEPCase) is located. PEPCase is regulated by a phosphoenolpyruvate carboxylase-kinase (PEPCase-k), which levels are greatly enhanced by salinity in sorghum. This work investigated whether NO is involved in this effect. NO donors (SNP, SNAP), the inhibitor of NO synthesis NNA, and the NO scavenger cPTIO were used for long- and short-term treatments. Long-term treatments had multifaceted consequences on both PPCK gene expression and PEPCase-k activity, and they also decreased photosynthetic gas-exchange parameters and plant growth. Nonetheless, it could be observed that SNP increased PEPCase-k activity, resembling salinity effect. Short-term treatments with NO donors, which did not change photosynthetic gas-exchange parameters and PPCK gene expression, increased PEPCase-k activity both in illuminated leaves and in leaves kept at dark. At least in part, these effects were independent on protein synthesis. PEPCase-k activity was not decreased by short-term treatment with cycloheximide in NaCl-treated plants; on the contrary, it was decreased by cPTIO. In summary, NO donors mimicked salt effect on PEPCase-k activity, and scavenging of NO abolished it. Collectively, these results indicate that NO is involved in the complex control of PEPCase-k activity, and it may mediate some of the plant responses to salinity.Fil: Monreal, José A.. Universidad de Sevilla; EspañaFil: Arias Baldrich, Cirenia. Universidad de Sevilla; EspañaFil: Tossi, Vanesa Eleonora. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigaciones Biológicas; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Feria, Ana B.. Universidad de Sevilla; EspañaFil: Rubio Casal, Alfredo. Universidad de Sevilla; EspañaFil: García Mata, Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigaciones Biológicas; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Lamattina, Lorenzo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigaciones Biológicas; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales; ArgentinaFil: García Mauriño, Sofía. Universidad de Sevilla; Españ
    corecore