1,368 research outputs found

    ABCD Neurocognitive Prediction Challenge 2019: Predicting individual fluid intelligence scores from structural MRI using probabilistic segmentation and kernel ridge regression

    Get PDF
    We applied several regression and deep learning methods to predict fluid intelligence scores from T1-weighted MRI scans as part of the ABCD Neurocognitive Prediction Challenge (ABCD-NP-Challenge) 2019. We used voxel intensities and probabilistic tissue-type labels derived from these as features to train the models. The best predictive performance (lowest mean-squared error) came from Kernel Ridge Regression (KRR; λ=10\lambda=10), which produced a mean-squared error of 69.7204 on the validation set and 92.1298 on the test set. This placed our group in the fifth position on the validation leader board and first place on the final (test) leader board.Comment: Winning entry in the ABCD Neurocognitive Prediction Challenge at MICCAI 2019. 7 pages plus references, 3 figures, 1 tabl

    On the Stability and Structural Dynamics of Metal Nanowires

    Full text link
    This article presents a brief review of the nanoscale free-electron model, which provides a continuum description of metal nanostructures. It is argued that surface and quantum-size effects are the two dominant factors in the energetics of metal nanowires, and that much of the phenomenology of nanowire stability and structural dynamics can be understood based on the interplay of these two competing factors. A linear stability analysis reveals that metal nanocylinders with certain magic conductance values G=1, 3, 6, 12, 17, 23, 34, 42, 51, 67, 78, 96, ... times the conductance quantum are exceptionally stable. A nonlinear dynamical simulation of nanowire structural evolution reveals a universal equilibrium shape consisting of a magic cylinder suspended between unduloidal contacts. The lifetimes of these metastable structures are also computed.Comment: 8 pages, 6 figure

    Rapid simulation of spatial epidemics : a spectral method

    Get PDF
    Spatial structure and hence the spatial position of host populations plays a vital role in the spread of infection. In the majority of situations, it is only possible to predict the spatial spread of infection using simulation models, which can be computationally demanding especially for large population sizes. Here we develop an approximation method that vastly reduces this computational burden. We assume that the transmission rates between individuals or sub-populations are determined by a spatial transmission kernel. This kernel is assumed to be isotropic, such that the transmission rate is simply a function of the distance between susceptible and infectious individuals; as such this provides the ideal mechanism for modelling localised transmission in a spatial environment. We show that the spatial force of infection acting on all susceptibles can be represented as a spatial convolution between the transmission kernel and a spatially extended ‘image’ of the infection state. This representation allows the rapid calculation of stochastic rates of infection using fast-Fourier transform (FFT) routines, which greatly improves the computational efficiency of spatial simulations. We demonstrate the efficiency and accuracy of this fast spectral rate recalculation (FSR) method with two examples: an idealised scenario simulating an SIR-type epidemic outbreak amongst N habitats distributed across a two-dimensional plane; the spread of infection between US cattle farms, illustrating that the FSR method makes continental-scale outbreak forecasting feasible with desktop processing power. The latter model demonstrates which areas of the US are at consistently high risk for cattle-infections, although predictions of epidemic size are highly dependent on assumptions about the tail of the transmission kernel

    The role of probiotics on the microbiota: effect on obesity

    Get PDF
    The microbiota and the human host maintain a symbiotic association. Nowadays, metagenomic analyses are providing valuable knowledge on the diversity and functionality of the gut microbiota. However, with regard to the definition of a “healthy microbiota” and the characterization of the dysbiosis linked to obesity, there is still not a clear answer. Despite this fact, attempts have been made to counteract obesity through probiotic supplementation. A literature search of experimental studies relevant to the topic was performed in PubMed database with the keywords “probiotic” and “obesity” and restricted to those with “Lactobacillus” or “Bifidobacterium” in the title. So far, evidence of an antiobesity effect of different lactobacilli and bifidobacteria has been mainly obtained from animal models of dietary-induced obesity. Using these experimental models, a substantial number of studies have reported reductions in weight gain and, in particular, fat tissue mass at different locations following administration of bacteria, as compared with controls. Antiatherogenic and anti-inflammatory effects—including regulation of expression of lipogenic and lipolytic genes in the liver, reduction in liver steatosis, improvement of blood lipid profile and glucose tolerance, decreased endotoxemia, and regulation of inflammatory pathways—are also reported in many of them. The number of human studies focused on probiotic administration for obesity management is still very scarce, and it is too soon to judge their potential efficacy, especially when considering the fact that the actions of probiotics are always strain specific and the individual response varies according to intrinsic factors, the overall composition of diet, and their interactions

    On soil-structure interaction in large non-slender partially buried structures

    Get PDF
    This paper addresses the seismic analysis of a deeply embedded non-slender structure hosting the pumping unit of a reservoir. The dynamic response in this type of problems is usually studied under the assumption of a perfectly rigid structure using a sub-structuring procedure (three-step solution) proposed specifically for this hypothesis. Such an approach enables a relatively simple assessment of the importance of some key factors influencing the structural response. In this work, the problem is also solved in a single step using a direct approach in which the structure and surrounding soil are modelled as a coupled system with its actual geometry and flexibility. Results indicate that, quite surprisingly, there are significant differences among prediction using both methods. Furthermore, neglecting the flexibility of the structure leads to a significant underestimation of the spectral accelerations at certain points of the structure

    GPR and ERT detection and characterization of a mass burial, Spanish Civil War, Northern Spain

    Get PDF
    Around 27,000 people were killed in the province of Asturias during the Spanish Civil War, with several thousands killed after the war ended. There are currently over 2,000 known mass burial locations throughout Spain, but many more are unknown. Geophysics is a useful tool employed to help in the active attempts to document and improve knowledge about victims from this conflict. This paper details a non-invasive study of the Cementerio de El Salvador, in the city of Oviedo, Northern Spain. Part of the cemetery contains a known mass burial with approximately 1,300 individuals from the Spanish Civil War and post-war repression eras. Multi-frequency near-surface geophysical techniques were undertaken, after permission, to enhance knowledge about which, if any, techniques should be used to detect, delineate and analyse such mass graves. Multi-frequency (250 MHz and 500 MHz) ground-penetrating radar surveys were acquired together with 2D and 3D Electrical Resistivity Tomography datasets. The results have established the limits of the mass grave and improve the knowledge of the internal mass grave structure. The paper also shows the importance of considering the climatic conditions during data acquisition. This has important implications for the successful detection of recent historical mass burials using near-surface geophysics

    Systematic review and meta-analysis on the adverse events of rimonabant treatment: Considerations for its potential use in hepatology

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The cannabinoid-1 receptor blockers have been proposed in the management of obesity and obesity-related liver diseases (fatty liver as NAFLD or NASH). Due to increasing number of patients to be potentially treated and the need to assess the advantage of this treatment in terms of risk/benefit, we analyze the side events reported during the treatment with rimonabant by a systematic review and meta-analysis of all randomized controlled studies.</p> <p>Methods</p> <p>All published randomized controlled trials using rimonabant <it>versus </it>placebo in adult subjects were retrieved. Relative risks (RR) with 95% confidence interval for relevant adverse events and number needed to harm was calculated.</p> <p>Results</p> <p>Nine trials (n = 9635) were considered. Rimonabant 20 mg was associated with an increased risk of adverse event (RR 1.35; 95%CI 1.17-1.56), increased discontinuation rate (RR 1.79; 95%CI 1.35-2.38), psychiatric (RR 2.35; 95%CI 1.66-3.34), and nervous system adverse events (RR 2.35; 95%CI 1.49-3.70). The number needed to harm for psychiatric adverse events is 30.</p> <p>Conclusion</p> <p>Rimonabant is associated with an increased risk of adverse events. Despite of an increasing interest for its use on fatty liver, the security profile and efficacy it is needs to be carefully assessed before its recommendation. At present the use of rimonabant on fatty liver cannot be recommended.</p

    Advanced adenoma diagnosis with FDG PET in a visibly normal mucosa: a case report

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>An accurate, early diagnosis and treatment of adenomatous polyp can curtail progression to colorectal cancer. F-18 fluorodeoxyglucose positron emission tomography (F-18 FDG PET) reveals the biochemical changes associated with the development of many cancers which precede the appearance of gross anatomical changes that may be visualized during surgical resection or via imaging with MR or CT.</p> <p>Intervention</p> <p>We detail the history of a 64 year old female who had a whole-body FDG PET scan as a part of an employee wellness program. A dose of 12.2 mCi of F-18 labeled FDG was administered.</p> <p>Results</p> <p>A focal cecal uptake with a standardized uptake value (SUV) of 8.9 was found on the PET scan. Conversely, only normal mucosa was observed during a colonoscopy done 2 months after the PET scan. Motivated by the PET scan finding, the colonoscopist performed a biopsy which revealed a villous adenoma without high grade dysplasia. Pathology from tissue extracted during an exploratory laparatomy completed one month later found the lesion to be a villous adenoma with high grade dysplasia.</p> <p>Conclusion</p> <p>Whole-body FDG PET scan revealed the biochemical metabolic changes in malignancy that preceded the appearance of any gross anatomical abnormality. A positive FDG PET scan indicative of colorectal cancer should be followed up with a colonoscopy and biopsy even in a visibly normal mucosa.</p

    Molecular design and control of fullerene-based bi-thermoelectric materials

    Get PDF
    Molecular junctions are a versatile test bed for investigating nanoscale thermoelectricity and contribute to the design of new cost-effective environmentally friendly organic thermoelectric materials. It was suggested that transport resonances associated with discrete molecular levels could play a key role in thermoelectric performance, but no direct experimental evidence has been reported. Here we study single-molecule junctions of the endohedral fullerene Sc3N@C8 connected to gold electrodes using a scanning tunnelling microscope. We find that the magnitude and sign of the thermopower depend strongly on the orientation of the molecule and on applied pressure. Our calculations show that Sc3N inside the fullerene cage creates a sharp resonance near the Fermi level, whose energetic location, and hence the thermopower, can be tuned by applying pressure. These results reveal that Sc3N@C80 is a bi-thermoelectric material, exhibiting both positive and negative thermopower, and provide an unambiguous demonstration of the importance of transport resonances in molecular junctions
    • 

    corecore