This article presents a brief review of the nanoscale free-electron model,
which provides a continuum description of metal nanostructures. It is argued
that surface and quantum-size effects are the two dominant factors in the
energetics of metal nanowires, and that much of the phenomenology of nanowire
stability and structural dynamics can be understood based on the interplay of
these two competing factors. A linear stability analysis reveals that metal
nanocylinders with certain magic conductance values G=1, 3, 6, 12, 17, 23, 34,
42, 51, 67, 78, 96, ... times the conductance quantum are exceptionally stable.
A nonlinear dynamical simulation of nanowire structural evolution reveals a
universal equilibrium shape consisting of a magic cylinder suspended between
unduloidal contacts. The lifetimes of these metastable structures are also
computed.Comment: 8 pages, 6 figure