18,737 research outputs found
Closed time path approach to the Casimir energy in real media
The closed time path formalism is applied, in the framework of open quantum
systems, to study the time evolution of the expectation value of the
energy-momentum tensor of a scalar field in the presence of real materials. We
analyze quantum fluctuations in a fully non-equilibrium scenario, when the
scalar field is interacting with the polarization degrees of freedom of matter,
described as quantum Brownian particles. A generalized analysis was done for
two types of couplings between the field and the material. On the one hand, we
considered a bilinear coupling, and on the other hand, a (more realistic)
current-type coupling as in the case of the electromagnetic field interacting
with matter. We considered the high temperature limit for the field, keeping
arbitrary temperatures for each part of the volume elements of the material. We
obtained a closed form for the Hadamard propagator, which let us study the
dynamical evolution of the expectations values of the energy-momentum tensor
components from the initial time. We showed that two contributions always take
place in the transient evolution: one of these is associated to the material
and the other one is only associated to the field. Transient features were
studied and the long-time limit was derived in several cases. We proved that in
the steady situation of a field in n + 1 dimensions, the material always
contribute unless is non-dissipative. Conversely, the proper field contribution
vanishes unless the material is non-dissipative or, moreover, at least for the
1 + 1 case, if there are regions without material. We conclude that any steady
quantization scheme in 1 + 1 dimensions must consider both contributions and we
argue why these results are physically expected from a dynamical point of view,
and also could be valid for higher dimensions based on the expected continuity
between the non-dissipative and real material cases.Comment: 28 pages, no figures. Version to appear in Phys. Rev. 
Oscillations of Thick Accretion Discs Around Black Holes - II
We present a numerical study of the global modes of oscillation of thick
accretion discs around black holes. We have previously studied the case of
constant distributions of specific angular momentum. In this second paper, we
investigate (i) how the size of the disc affects the oscillation
eigenfrequencies, and (ii) the effect of power-law distributions of angular
momentum on the oscillations. In particular, we compare the oscillations of the
disc with the epicyclic eigenfrequencies of a test particle with different
angular momentum distributions orbiting around the central object. We find that
there is a frequency shift away from the epicyclic eigenfrequency of the test
particle to lower values as the size of the tori is increased. We have also
studied the response of a thick accretion disc to a localized external
perturbation using non constant specific angular momentum distributions within
the disc. We find that in this case it is also possible (as reported previously
for constant angular momentum distributions) to efficiently excite internal
modes of oscillation. In fact we show here that the local perturbations excite
global oscillations (acoustic p modes) closely related to the epicyclic
oscillations of test particles. Our results are particularly relevant in the
context of low mass X-ray binaries and microquasars, and the high frequency
Quasi-Periodic Oscillations (QPOs) observed in them. Our computations make use
of a Smooth Particle Hydrodynamics (SPH) code in azimuthal symmetry, and use a
gravitational potential that mimics the effects of strong gravity.Comment: 10 pages, 8 figures, accepted for publication as a paper in the
  Monthly Notices of the Royal Astronomical Societ
Benchmarking Nonequilibrium Green's Functions against Configuration Interaction for time-dependent Auger decay processes
We have recently proposed a Nonequilibrium Green's Function (NEGF) approach
to include Auger decay processes in the ultrafast charge dynamics of
photoionized molecules. Within the so called Generalized Kadanoff-Baym Ansatz
the fundamental unknowns of the NEGF equations are the reduced one-particle
density matrix of bound electrons and the occupations of the continuum states.
Both unknowns are one-time functions like the density in Time-Dependent
Functional Theory (TDDFT). In this work we assess the accuracy of the approach
against Configuration Interaction (CI) calculations in one-dimensional model
systems. Our results show that NEGF correctly captures qualitative and
quantitative features of the relaxation dynamics provided that the energy of
the Auger electron is much larger than the Coulomb repulsion between two holes
in the valence shells. For the accuracy of the results dynamical
electron-electron correlations or, equivalently, memory effects play a pivotal
role. The combination of our NEGF approach with the Sham-Schl\"uter equation
may provide useful insights for the development of TDDFT exchange-correlation
potentials with a history dependence.Comment: 7 pages, 3 figure
Oscillations of Thick Accretion Discs Around Black Holes
We present a numerical study of the response of a thick accretion disc to a
localized, external perturbation with the aim of exciting internal modes of
oscillation. We find that the perturbations efficiently excite global modes
recently identified as acoustic p--modes, and closely related to the epicyclic
oscillations of test particles. The two strongest modes occur at
eigenfrequencies which are in a 3:2 ratio. We have assumed a constant specific
angular momentum distribution within the disc. Our models are in principle
scale--free and can be used to simulate accretion tori around stellar or super
massive black holes.Comment: 4 pages, 4 figures, accepted for publication as a letter in the
  Monthly Notices of the Royal Astronomical Societ
Time dependent transport phenomena
The aim of this review is to give a pedagogical introduction to our recently
proposed ab initio theory of quantum transport.Comment: 28 pages, 18 figure
Studying the Molecular Ambient towards the Young Stellar Object EGO G35.04-0.47
We are performing a systematic study of the interstellar medium around
extended green objects (EGOs), likely massive young stellar objects driving
outflows. EGO G35.04-0.47 is located towards a dark cloud at the northern-west
edge of an HII region. Recently, H2 jets were discovered towards this source,
mainly towards its southwest, where the H2 1-0 S(1) emission peaks. Therefore,
the source was catalogued as the Molecular Hydrogen emission-line object MHO
2429. In order to study the molecular ambient towards this star-forming site,
we observed a region around the aforementioned EGO using the Atacama
Submillimeter Telescope Experiment in the 12CO J=3--2, 13CO J=3--2, HCO+
J=4--3, and CS J=7--6 lines with an angular and spectral resolution of 22" and
0.11 km s-1, respectively. The observations revealed a molecular clump where
the EGO is embedded at v_LSR ~ 51 km s-1, in coincidence with the velocity of a
Class I 95 GHz methanol maser previously detected. Analyzing the 12CO line we
discovered high velocity molecular gas in the range from 34 to 47 km s-1, most
likely a blueshifted outflow driven by the EGO. The alignment and shape of this
molecular structure coincide with those of the southwest lobe of MHO 2429
mainly between 46 and 47 km s-1, confirming that we are mapping its CO
counterpart. Performing a SED analysis of EGO G35.04-0.47 we found that its
central object should be an intermediate-mass young stellar object accreting
mass at a rate similar to those found in some massive YSOs. We suggest that
this source can become a massive YSO.Comment: accepted to be published in PASJ - 24 September 201
Current rectification in a single molecule diode: the role of electrode coupling
We demonstrate large rectification ratios (> 100) in single-molecule
junctions based on a metal-oxide cluster (polyoxometalate), using a scanning
tunneling microscope (STM) both at ambient conditions and at low temperature.
These rectification ratios are the largest ever observed in a single-molecule
junction, and in addition these junctions sustain current densities larger than
10^5 A/cm^2. By following the variation of the I-V characteristics with
tip-molecule separation we demonstrate unambiguously that rectification is due
to asymmetric coupling to the electrodes of a molecule with an asymmetric level
structure. This mechanism can be implemented in other type of molecular
junctions using both organic and inorganic molecules and provides a simple
strategy for the rational design of molecular diodes
Inelastic lifetimes of hot electrons in real metals
We report a first-principles description of inelastic lifetimes of excited
electrons in real Cu and Al, which we compute, within the GW approximation of
many-body theory, from the knowledge of the self-energy of the excited
quasiparticle. Our full band-structure calculations indicate that actual
lifetimes are the result of a delicate balance between localization, density of
states, screening, and Fermi-surface topology. A major contribution from
-electrons participating in the screening of electron-electron interactions
yields lifetimes of excited electrons in copper that are larger than those of
electrons in a free-electron gas with the electron density equal to that of
valence () electrons. In aluminum, a simple metal with no -bands,
splitting of the band structure over the Fermi level results in electron
lifetimes that are smaller than those of electrons in a free-electron gas.Comment: 4 papes, 2 figures, to appear in Phys. Rev. Let
Background modeling by shifted tilings of stacked denoising autoencoders
The effective processing of visual data without interruption is currently of supreme importance. For that purpose, the analysis system must adapt to events that may affect the data quality and maintain its performance level over time. A methodology for background modeling and foreground detection, whose main characteristic is its robustness against stationary noise, is presented in the paper. The system is based on a stacked denoising autoencoder which extracts a set of significant features for each patch of several shifted tilings of the video frame. A probabilistic model for each patch is learned. The distinct patches which include a particular pixel are considered for that pixel classification. The experiments show that classical methods existing in the literature experience drastic performance drops when noise is present in the video sequences, whereas the proposed one seems to be slightly affected. This fact corroborates the idea of robustness of our proposal, in addition to its usefulness for the processing and analysis of continuous data during uninterrupted periods of time.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech
Germanene: a novel two-dimensional Germanium allotrope akin to Graphene and Silicene
Using a gold (111) surface as a substrate we have grown in situ by molecular
beam epitaxy an atom-thin, ordered, two-dimensional multi-phase film. Its
growth bears strong similarity with the formation of silicene layers on silver
(111) templates. One of the phases, forming large domains, as observed in
Scanning Tunneling Microscopy, shows a clear, nearly flat, honeycomb structure.
Thanks to thorough synchrotron radiation core-level spectroscopy measurements
and advanced Density Functional Theory calculations we can identify it to a
xR(30{\deg}) germanene layer in coincidence with a
xR(19.1{\deg}) Au(111) supercell, thence, presenting the
first compelling evidence of the birth of a novel synthetic germanium-based
cousin of graphene.Comment: 16 pages, 4 figures, 1 tabl
- …
