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Abstract. The effective processing of visual data without interruption
is currently of supreme importance. For that purpose, the analysis sys-
tem must adapt to events that may affect the data quality and maintain
its performance level over time. A methodology for background model-
ing and foreground detection, whose main characteristic is its robustness
against stationary noise, is presented in the paper. The system is based
on a stacked denoising autoencoder which extracts a set of significant
features for each patch of several shifted tilings of the video frame. A
probabilistic model for each patch is learned. The distinct patches which
include a particular pixel are considered for that pixel classification. The
experiments show that classical methods existing in the literature ex-
perience drastic performance drops when noise is present in the video
sequences, whereas the proposed one seems to be slightly affected. This
fact corroborates the idea of robustness of our proposal, in addition to
its usefulness for the processing and analysis of continuous data during
uninterrupted periods of time.
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1 Introduction

Visual pieces of information such as images or video sequences are massively
generated and used nowadays. Therefore, reliable and efficient ways to process
that kind of data are needed more than ever. Video surveillance remains a very
active field in the area of artificial vision, due to the fact that some demanding
tasks have not been addressed adequately yet, as it is the case of background
modeling, which consists of deciding whether an object of an image belongs to
the scene foreground or background.

Robustness is a key feature which foreground detection algorithms must
present. They should work continuously and they have to be prepared to cope
with events which make the background characteristics vary. A change in the
weather conditions in outdoor environments or lightning variations in indoor en-
vironments may compromise the reliability of moving object detection. There-
fore, the algorithm performance must be kept at an acceptable level not only

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Institucional Universidad de Málaga

https://core.ac.uk/display/214838279?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
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for the initial video frames but also for the entire sequence. This goal is hard
to achieve and many published methods stop working properly when changes in
the environment occur.

Most of the foreground detection algorithms work at pixel level. They at-
tempt to learn a model per pixel in order to compute the likelihood of each pixel
to belong to one of the two possible classes: foreground or background. The main
differences among the most referenced proposals reside in the underlying model
that represents each pixel intensity of color over time. Wren et al. [14] defines
pixel models based on a Gaussian distribution, whereas the GMM model [10] uses
K distributions to manage multimodal funds. An intermediate approach can be
found in Zivkovic [16], where as many Gaussians as necessary up to a maximum
value (K) are considered. On the other hand, Elgammal et al. [2] uses kernel
distributions to obtain non parametric probabilistic models. Finally, it must be
cited SOBS [5] and FSOM [3], whose models are based on self-organizing maps,
which are unsupervised neural networks in which a topology is defined. Model
robustness is provided by combining each pixel output (probability of belonging
to a moving object) with their neighbor ones.

In this work a foreground detection algorithm that attenuates the impact of
noise in scene background modeling is presented. Each image will be divided
into patches that are part of distinct shifted tilings of the video frame. As a
consequence, each pixel will belong to different tiling patches. The noise that
is present in the patches will be removed by a previously trained stacked au-
toencoder, which is an unsupervised deep learning neural network well suited to
information representation, due to its ability to provide relevant data features
[12]. Single layer autoencoders are proved to span the same subspace as a Prin-
cipal Components Analysis technique [1]. The reduced patch information will
be inputted to a mixture of Gaussian probabilistic model. Finally, each pixel
classification will combine the classification outputs of the patches to which it
belongs.

The paper is divided in the following sections: Section 2 presents the object
detection methodology based on the analysis of image patches to obtain a fore-
ground mask from an input frame; section 3 reports the experimental results
over several public surveillance sequences and Section 4 concludes the article.

2 Methodology

Most previous approaches to background modeling in video sequences represent
each pixel of the video frame separately. Our method intends to model patches
of size N × N pixels, so that for each incoming video frame an estimation is
made in order to know whether each patch belongs to the background of the
scene. Furthermore, M shifted tilings of the video frame are considered, so that
a particular pixel is classified by M background models. These M classifications
are subsequently combined to yield a single classification output. The process is
divided in two stages: firstly, a condensed representation of the patch, composed
of significant features, is obtained by means of a previously trained Stacked
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Fig. 1: Complete autoencoder structure with layers sizes.

Denoising Autoencoder (SDA) [12]; secondly, a probabilistic model classifies the
patch according to their computed set of relevant features. Once all the patches
have been classified the pixels are labelled accordingly.

2.1 Patch feature extraction

It turns out that stacked denoising autoencoders might find difficulties in mod-
eling too small patches. Here we propose to overcome this limitation by using
big N × N pixel patches, where N is big enough that the autoencoder models
the patches adequately. Then we have M tilings of the video frame, so that each
tiling is composed by N × N patches. The i-th tiling, where i ∈ {1, ...,M} is
characterized by a unique shift vector si ∈ {0, ..., N − 1}× {0, ..., N − 1}, which
makes it different from all the other tilings. Please note that the upper left corner
of a N × N patch of the i-th tiling must be located at position si in the video
frame. The video frame is extended as required by symmetric (mirror) padding,
so that all patches are complete with their N×N pixels irrespective of the shifts.

Let X ∈ RH be a patch of size H = N2, where tristimulus pixel color values
are assumed. A single stacked denoising autoencoder processes all the patches
of all the tilings:

X̃ = g (f (X)) (1)

f : RH → RL (2)

g : RL → RH (3)

where X̃ ∈ RH is the reconstructed version of the input patch X, f is the
encoding part of the autoencoder, g is the decoding part of the autoencoder, and
L is the number of neurons of the innermost layer of the neural architecture,
i.e. the autoencoder reduces the high dimensional input of size H to a a low
dimensional set of features of size L with L < H.

The autoencoder is trained to minimize the reconstruction error Etrain:

Etrain =

R∑
i=1

∥∥∥X− X̃
∥∥∥2 (4)
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where R is the overall number of patches existing in the training data set, which
is usually composed of video frames. Denoising autoencoders try to learn a robust
representation made up of more general features which prevents from overtrain-
ing and diminishes the influence of scene factors such as illumination and local
variation. In an attempt to enforce the invariance of the autoencoder to the
diverse scene conditions, several authors [13][15] have used a training set that
comprises a huge amount of generic natural image patches that may be cor-
rupted instead of patches extracted from the frames corresponding to the video
to process. This approach is followed in our proposal, where the training set for
our single autoencoder is generated from the Tiny Images dataset [11].

2.2 Patch classification

As the video sequence progresses, the features which are discovered by the au-
toencoder are extracted, and a probabilistic model is learned for each patch of
each tiling. This model aims to capture the main characteristics of the probabil-
ity distribution of the feature vector v ∈ RL:

v = f (X) (5)

To this end, the mean µj = E [vj ] and the variance σ2
j = E

[
(vj − µj)

2
]

of each component of v are approximated by the Robbins-Monro stochastic
approximation algorithm [7]. Initially, µj is set to the median reduced feature
vector of the first video frames, while the initial value for σ2

j is obtained from
the autoencoder training image set. During the training phase each probabilistic
model characteristics are updated only if the patch j is classified as background:

µj,t+1 = (1− α)µj,t + αvj,t (6)

σ2
j,t+1 = (1− α)σ2

j,t + α (vj,t − µj,t)
2

(7)

where t is the time instant (the frame index) and α is the step size.
Each patch is declared to belong to the foreground whenever the number

of components of the feature vector which are far from its estimated mean, as
measured with respect to the estimated variance, is higher than a given threshold:

C <

L∑
j=1

I (|vj,t − µj,t| > Kσj,t) (8)

where I stands for the indicator function, C is a tunable parameter which spec-
ifies the number of components which must be far from its estimated mean to
declare that the small patch belongs to the foreground, and K is another tunable
parameter which specifies how many standard deviations an observation must
depart from its estimated mean to be considered to be far away.

Each pixel of the video frame belongs to M patches, one per tiling. The
fraction of these patches which have been declared as foreground is computed.



Background modeling by shifted tilings of stacked denoising autoencoders 5

Table 1: Final parameter selection for each video. τ = 0.5 in any case.

canoe fountain01 fountain02

C = 2, K = 1, α = 0.001 C = 2, K = 2, α = 0.01 C = 6, K = 0.5, α = 0.001

boats pedestrians overpass

C = 6, K = 2, α = 0.001 C = 10, K = 0.5, α = 0.001 C = 3, K = 3, α = 0.005

Then the pixel is declared to belong to the foreground whenever the fraction is
higher than a prespecified threshold τ , where τ ∈ [0, 1].

3 Experimental Results

3.1 Methods

Seven methods have been selected in order to make a performance comparison
with our proposal: WrenGA [14], ZivkovicGMM [16], ElgammalKDE [2], SuB-
SENSE [9], SC-SOBS ([6]), CL-VID [4] and FSOM [3].

The first four of these methods are available on BGS library [8] 1. SC-SOBS
executable has been obtained from CVPRLAB web 2. FSOM and CL-VID code
have been obtained from their authors’ websites. The different method parame-
ters are set to the default values indicated by the authors.

Our proposed approach has been implemented using Python.The neural net-
work implementation makes use of the high-level application programming in-
terface Keras3 which is based on TensorFlow4.

A thousand random images from Tiny Images dataset [11]5 have been used
to train and test our autoencoder implementation. Total amount of autoencoder
training data is 400,000 since each image has 32x32 pixels and we have divided
each one to obtain four 16x16 images.

Input video sequences with added Gaussian noise have been generated once
so all studied methods process the same sequences in order to be as fair as
possible when comparing them. We do not use any additional post processing in
any of the methods.

3.2 Sequences

A set of video sequences have been selected from the 2014 dataset of the ChangeDe-
tection.net website6. Five of the selected scenes are from Dynamic Background

1 https://github.com/andrewssobral/bgslibrary
2 http://cvprlab.uniparthenope.it/index.php/code/moving-object-detection-

software-2.html
3 https://keras.io/
4 https://www.tensorflow.org/
5 http://groups.csail.mit.edu/vision/TinyImages/
6 http://changedetection.net/
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category, and another one from the Baseline one. Fountain01 shows a road next
to vertical water springs (432x288 pixels and 1184 frames), while in Fountain02
a road next to a fountain spitting water out can be seen. (432x288 pixels and
1499 frames). Canoe presents a canoe going across a river with water and forest
background (320x240 pixels and 1189 frames). Boats shows a river and a road.
Various vehicles move on the road and various boats cross through the river.
(320x240 pixels and 7999 frames). In Overpass, a road behind a bridge traversed
by a man and a river is displayed (320x240 pixels and 3000 frames). Finally,
Pedestrians is a baseline video where pedestrians walk over from one end of the
screen to the other (360x240 pixels and 1099 frames).

3.3 Parameter selection

Five parameters must be fixed in order for our method to work properly (τ , M,
C, K and α). τ has been set to 0.5 for all experiments, thus, a pixel is segmented
as foreground if at least half of the M tiles where it belongs are considered as
foreground. M ∈ {1, 4, 16, 64} has been tested to study parameter M influence
and figure 3 on page 8 shows that comparison without noise and with it. Our
experiments reveal the greater M , the better performance. However we have
selected M = 16 as our method version to compare with competitor methods
so that a reasonable execution time is maintained. C, K, and α have been se-
lected empirically based on our previous experience an preliminary experiments.
Table 1 on page 5 shows final parameter selection for each video. The same
configuration has been used for each noise and M value in experiments.

3.4 Evaluation

As a measure to perform a quantitative comparison among methods, the well-
known F-score (also noted as F-measure or F1 score) is used. It is defined as a
balanced harmonic mean of precision and recall. This measure provides values
in the interval [0, 1], where values close to one mean better performance.

F-score has been calculated for each binary frame in Region of Interest (speci-
fied by ChangeDetection.net) generated using each previously mentioned method
and we have obtained the mean for all frames with TP +FN greater than zero.

Comparison among methods for videos with different Gaussian noise levels
can be observed on table 2 on page 8. The table shows how the proposed method
is able to deal with greater amount of noise than its contenders. While some of
those methods can deal with Gaussian noise with σ = 0.1 (SUBSENSE, CL-VID
and SC-SOBS, for example), their performance drops significantly in most tests
where σ = 0.2. In figure 2 on page 7, it can be observed that our method copes
with noise increasing faintly the number of FN pixels instead of increasing FP
pixels.
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Fig. 2: Qualitative results for frame 742 from fountain02 video. From left to
right: images with different amount of Gaussian noise with mean 0. First row
is original dataset input image with different amounts of Gaussian noise and
ground-truth. Other rows correspond to foreground segmentation performed for
various methods for each input image.

σ = 0 σ = 0.1 σ = 0.2 GT

Sequence

Ours

FSOM

KDE

Wren

Zivkovic
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(a) No noise (b) Gaussian σ=0.2

Fig. 3: Performance of our method using different number of tilings M . Sub-
figure (a) shows results when there is no noise in videos. Sub-figure (b) shows
performance when a Gaussian noise with σ = 0.2 is present. The greater M , the
better average performance.

Table 2: Quantitative results. Each method F1-Score is showed next to its rank-
ing for each video and Gaussian noise level. Last row is the sum of all ranks
where the lower, the better.
σ = 0

oursM=16 WREN ZIVKOVIC SC-SOBS CL-VID FSOM KDE SUBSENSE
canoe 0.7526 (4) 0.4584 (7) 0.6097 (6) 0.8178 (2) 0.8020 (3) 0.8234 (1) 0.2196 (8) 0.7142 (5)
fountain01 0.3124 (3) 0.1325 (7) 0.1767 (6) 0.3067 (4) 0.1823 (5) 0.4333 (2) 0.0429 (8) 0.7083 (1)
fountain02 0.6677 (4) 0.6053 (7) 0.6533 (6) 0.7886 (1) 0.6596 (5) 0.7516 (3) 0.1114 (8) 0.7777 (2)
boats 0.5870 (4) 0.3871 (7) 0.4803 (6) 0.7582 (1) 0.6910 (2) 0.6239 (3) 0.1359 (8) 0.5619 (5)
pedestrians 0.5250 (7) 0.7031 (3) 0.6813 (4) 0.7250 (1) 0.6748 (5) 0.6623 (6) 0.3557 (8) 0.7235 (2)
overpass 0.5320 (6) 0.4012 (7) 0.5470 (5) 0.6889 (3) 0.7237 (2) 0.7786 (1) 0.1595 (8) 0.6761 (4)

σ = 0.1

oursM=16 WREN ZIVKOVIC SC-SOBS CL-VID FSOM KDE SUBSENSE
canoe 0.7567 (1) 0.3600 (7) 0.5174 (5) 0.5868 (2) 0.5846 (3) 0.3828 (6) 0.1385 (8) 0.5420 (4)
fountain01 0.3214 (2) 0.0621 (7) 0.0811 (6) 0.1410 (3) 0.1192 (4) 0.1017 (5) 0.0114 (8) 0.5097 (1)
fountain02 0.6705 (2) 0.2376 (7) 0.3620 (6) 0.4595 (4) 0.5046 (3) 0.4043 (5) 0.0313 (8) 0.7724 (1)
boats 0.5836 (4) 0.2266 (7) 0.3897 (6) 0.5857 (3) 0.7771 (1) 0.6849 (2) 0.1072 (8) 0.4521 (5)
pedestrians 0.5104 (5) 0.4820 (6) 0.5984 (4) 0.6731 (3) 0.7013 (2) 0.4420 (7) 0.0995 (8) 0.7417 (1)
overpass 0.6048 (2) 0.3002 (6) 0.4723 (5) 0.4916 (4) 0.6823 (1) 0.5478 (3) 0.1024 (8) 0.2577 (7)

σ = 0.2

oursM=16 WREN ZIVKOVIC SC-SOBS CL-VID FSOM KDE SUBSENSE
canoe 0.7460 (1) 0.2285 (3) 0.3504 (2) 0.1826 (5) 0.1451 (6) 0.1293 (7) 0.1176 (8) 0.2004 (4)
fountain01 0.2825 (1) 0.0169 (4) 0.0254 (3) 0.0115 (5) 0.0093 (7) 0.0093 (7) 0.0089 (8) 0.0352 (2)
fountain02 0.6485 (1) 0.0538 (4) 0.0864 (3) 0.0306 (5) 0.0222 (8) 0.0234 (6) 0.0232 (7) 0.4946 (2)
boats 0.4983 (1) 0.1086 (4) 0.1685 (2) 0.0741 (5) 0.0737 (6) 0.1106 (3) 0.0732 (7) 0.0057 (8)
pedestrians 0.4737 (2) 0.1166 (4) 0.1766 (3) 0.0782 (5) 0.0466 (6) 0.0381 (8) 0.0454 (7) 0.7174 (1)
overpass 0.5383 (1) 0.1528 (3) 0.2559 (2) 0.1040 (6) 0.1228 (5) 0.1235 (4) 0.0848 (7) 0.0777 (8)

Σ rank 51 100 80 62 74 79 140 63
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4 Conclusions

A methodology for detecting the foreground in video sequences has been pre-
sented. It combines M tilings of N × N patches of the video frame and a pre-
viously trained stacked autoencoder which attempts to discover significant fea-
tures of the patches even in presence of noise. The reduced representation of each
patch is provided to a multidimensional probabilistic model which determines
the likelihood of a patch to belong to background or foreground.

The influence of the tilings in the model capability is clearly manifest. The
higher the number of them, the better the performance. In the case of using two
or more, they allow the model, which works at region level, to provide a particular
pixel classification output which may differ from the classification output of the
pixels of the same patch, because those pixels are also part of different patches in
the remaining tilings. However, the computational cost inherent to the processing
of patches of a new tiling must be taken into account. A trade-off between
accuracy and computing time is needed and M = 16 is the recommended value
according to the experiments.

Several heterogeneous scenes, with and without noise, have been processed
and the results yielded by our method and other seven background modeling
methods have been compared. According to those results, the method robustness
must be highlighted. Not only is it able to keep a good performance even though
noise appears but it is also the method that best works with very noisy sequences,
which make the performance of the other methods fall drastically whereas the
proposed method one is slightly diminished.
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