664 research outputs found

    Stoichiometry control of magnetron sputtered Bi2_2Sr2_2Ca1−x_{1-x}Yx_xCu2_2Oy_y (0≤\lex≤\le0.5) thin film, composition spread libraries: Substrate bias and gas density factors

    Full text link
    A magnetron sputtering method for the production of thin-film libraries with a spatially varying composition, x, in Bi2Sr2Ca1-xYxCu2Oy (0<=x<=0.5) has been developed. Two targets with a composition of Bi2Sr2YCu2O_{8.5 + \delta} and Bi_2Sr_2CaCu_2O_{8 + \delta} are co-sputtered with appropriate masks. The target masks produce a linear variation in opposite, but co-linear radial direction, and the rotation speed of the substrate table is sufficient to intimately mix the atoms. EDS/WDS composition studies of the films show a depletion of Sr and Bi that is due to oxygen anion resputtering. The depletion is most pronounced at the centre of the film (i.e. on-axis with the target) and falls off symmetrically to either side of the 75 mm substrate. At either edge of the film the stoichiometry matches the desired ratios. Using a 12 mTorr process gas of argon and oxygen in a 2:1 ratio, the strontium depletion is corrected. The bismuth depletion is eliminated by employing a rotating carbon brush apparatus which supplies a -20 V DC bias to the sample substrate. The negative substrate bias has been used successfully with an increased chamber pressure to eliminate the resputtering effect across the film. The result is a thin film composition spread library with the desired stoichiometry.Comment: 16 pages, 12 figures, 4 tables, submitted to Physica C - Superconductivity (April 15, 2005), elsart.st

    Spherically Symmetric Solutions in Macroscopic Gravity

    Full text link
    Schwarzschild's solution to the Einstein Field Equations was one of the first and most important solutions that lead to the understanding and important experimental tests of Einstein's theory of General Relativity. However, Schwarzschild's solution is essentially based on an ideal theory of gravitation, where all inhomogeneities are ignored. Therefore, any generalization of the Schwarzschild solution should take into account the effects of small perturbations that may be present in the gravitational field. The theory of Macroscopic Gravity characterizes the effects of the inhomogeneities through a non-perturbative and covariant averaging procedure. With similar assumptions on the geometry and matter content, a solution to the averaged field equations as dictated by Macroscopic Gravity are derived. The resulting solution provides a possible explanation for the flattening of galactic rotation curves, illustrating that Dark Matter is not real but may only be the result of averaging inhomogeneities in a spherically symmetric background.Comment: 14 pages, added and updated references, some paragraphs rewritten for clarity, typographical errors fixed, results have not change

    Correlations and scaling in one-dimensional heat conduction

    Full text link
    We examine numerically the full spatio-temporal correlation functions for all hydrodynamic quantities for the random collision model introduced recently. The autocorrelation function of the heat current, through the Kubo formula, gives a thermal conductivity exponent of 1/3 in agreement with the analytical prediction and previous numerical work. Remarkably, this result depends crucially on the choice of boundary conditions: for periodic boundary conditions (as opposed to open boundary conditions with heat baths) the exponent is approximately 1/2. This is expected to be a generic feature of systems with singular transport coefficients. All primitive hydrodynamic quantities scale with the dynamic critical exponent predicted analytically.Comment: 7 pages, 11 figure

    Optimal Energy Dissipation in Sliding Friction Simulations

    Full text link
    Non-equilibrium molecular dynamics simulations, of crucial importance in sliding friction, are hampered by arbitrariness and uncertainties in the removal of the frictionally generated Joule heat. Building upon general pre-existing formulation, we implement a fully microscopic dissipation approach which, based on a parameter-free, non-Markovian, stochastic dynamics, absorbs Joule heat equivalently to a semi-infinite solid and harmonic substrate. As a test case, we investigate the stick-slip friction of a slider over a two-dimensional Lennard-Jones solid, comparing our virtually exact frictional results with approximate ones from commonly adopted dissipation schemes. Remarkably, the exact results can be closely reproduced by a standard Langevin dissipation scheme, once its parameters are determined according to a general and self-standing variational procedure

    HI in the Outskirts of Nearby Galaxies

    Full text link
    The HI in disk galaxies frequently extends beyond the optical image, and can trace the dark matter there. I briefly highlight the history of high spatial resolution HI imaging, the contribution it made to the dark matter problem, and the current tension between several dynamical methods to break the disk-halo degeneracy. I then turn to the flaring problem, which could in principle probe the shape of the dark halo. Instead, however, a lot of attention is now devoted to understanding the role of gas accretion via galactic fountains. The current Λ\rm \Lambda cold dark matter theory has problems on galactic scales, such as the core-cusp problem, which can be addressed with HI observations of dwarf galaxies. For a similar range in rotation velocities, galaxies of type Sd have thin disks, while those of type Im are much thicker. After a few comments on modified Newtonian dynamics and on irregular galaxies, I close with statistics on the HI extent of galaxies.Comment: 38 pages, 17 figures, invited review, book chapter in "Outskirts of Galaxies", Eds. J. H. Knapen, J. C. Lee and A. Gil de Paz, Astrophysics and Space Science Library, Springer, in pres

    THERMAL CONDUCTIVITY FOR A NOISY DISORDERED HARMONIC CHAIN

    Get PDF
    We consider a dd-dimensional disordered harmonic chain (DHC) perturbed by an energy conservative noise. We obtain uniform in the volume upper and lower bounds for the thermal conductivity defined through the Green-Kubo formula. These bounds indicate a positive finite conductivity. We prove also that the infinite volume homogenized Green-Kubo formula converges

    Interferometric Bell-state preparation using femtosecond-pulse-pumped Spontaneous Parametric Down-Conversion

    Full text link
    We present theoretical and experimental study of preparing maximally entangled two-photon polarization states, or Bell states, using femtosecond pulse pumped spontaneous parametric down-conversion (SPDC). First, we show how the inherent distinguishability in femtosecond pulse pumped type-II SPDC can be removed by using an interferometric technique without spectral and amplitude post-selection. We then analyze the recently introduced Bell state preparation scheme using type-I SPDC. Theoretically, both methods offer the same results, however, type-I SPDC provides experimentally superior methods of preparing Bell states in femtosecond pulse pumped SPDC. Such a pulsed source of highly entangled photon pairs is useful in quantum communications, quantum cryptography, quantum teleportation, etc.Comment: 11 pages, two-column format, to appear in PR

    Thermal conductivity in harmonic lattices with random collisions

    Get PDF
    We review recent rigorous mathematical results about the macroscopic behaviour of harmonic chains with the dynamics perturbed by a random exchange of velocities between nearest neighbor particles. The random exchange models the effects of nonlinearities of anharmonic chains and the resulting dynamics have similar macroscopic behaviour. In particular there is a superdiffusion of energy for unpinned acoustic chains. The corresponding evolution of the temperature profile is governed by a fractional heat equation. In non-acoustic chains we have normal diffusivity, even if momentum is conserved.Comment: Review paper, to appear in the Springer Lecture Notes in Physics volume "Thermal transport in low dimensions: from statistical physics to nanoscale heat transfer" (S. Lepri ed.
    • …
    corecore