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THERMAL CONDUCTIVITY FOR A NOISY DISORDERED

HARMONIC CHAIN

CÉDRIC BERNARDIN

Abstract. We consider a d-dimensional disordered harmonic chain
(DHC) perturbed by an energy conservative noise. We obtain uniform in
the volume upper and lower bounds for the thermal conductivity defined
through the Green-Kubo formula. These bounds indicate a positive fi-
nite conductivity. We prove also that the infinite volume homogenized
Green-Kubo formula converges.

1. Introduction

Thermal transport in Fermi-Pasta-Ulam (FPU) chains is a subject of
intense research ([8], [14]). In a perfect crystal, equilibrium positions of
atoms form a perfect regular configuration (e.g. a sublattice of Z

d). Due
to interactions between nearest-neighbor atoms and with a given substrate,
real position of atoms are subject to fluctuations around equilibrium. Lattice
vibrations are the carriers of heat current. FPU models are described by
Hamiltonian of the form:

H =
∑

x

p2
x

2mx
+
∑

x

W (qx) +
∑

|x−y|=1

V (qx − qy)

Here qx ∈ R
d is the deviation of atom x from its equilibrium position, px is

its momentum and mx its mass. Interactions between atoms are described
by the potential V while the pinning potential W is for the interaction with
the substrate. The main problem is to understand the dependance of the
thermal conductivity κN with the size N of the system. Fourier’s law re-
quires a finite positive limit of κN in the thermodynamic limit N → ∞. In
low dimensional systems it is largely accepted that anomalous heat conduc-
tion takes place as soon as momentum is conserved (W = 0). For nonlinear
systems only few rigorous results exist and require extra assumptions ([10])
or start from kinetic approximations ([1], [19]). Moreover numerical sim-
ulations are not very conclusive ([4] and references therein). On the other
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2 CÉDRIC BERNARDIN

hand homogenous harmonic chain is an exactly solvable model easy to study.
Nevertheless it does not reproduce expected behavior of real systems and it
turns out that κN is of order N . This is due to the fact that phonons can
travel ballistically along the chain without scattering ([20]).

Recently it has been proposed to perturb homogenous FPU chains by
a conservative stochastic noise. The perturbation of an harmonic chain is
sufficient to reproduce qualitatively what is expected for real anharmonic
chains ([2], [6], [7]). The dynamics becomes non-linear because of the noise
but remains mathematically reachable. Perturbation of anharmonic chains
is more difficult to study and only partial but rigorous results have been
obtained ([3]).

We turn now to non homogenous chains. As it is well known, the pres-
ence of disorder generally induces localization of the normal modes and one
can expect the latter to behave as perfect thermal insulators (κN → 0).
The only analytically tractable model is the one dimensional disordered
harmonic chain (DHC). Surprisingly the behavior of the thermal conduc-
tivity depends on boundary conditions and on the properties of the ther-
mostats. Consider first the unpinned DHC. For fixed boundary conditions
(the Casher-Lebowitz model, [11]), κN ∼ N1/2, while for free boundaries

(the Rubin-Greer model, [21]), κN ∼ N−1/2. This curious phenomenon has
been studied in [17] in a more general setting and it turns out that ”the
exponent [of κN ] depends not only on the properties of the disordered chain
itself, but also on the spectral properties of the heat baths. For special
choices of baths one gets the ”Fourier behavior” ”. If we add a pinning
potential in the DHC, κN becomes exponentially small in N .

Recently, Dhar and Lebowitz ([18]) were interested in the effect of both
disorder and anharmonicity. The conclusions of their numerical simulations
are that the introduction of a small amount of phonon-phonon interactions in
the DHC leads to a positive finite thermal conductivity. Moreover it seems
that the transition takes place instantaneously without any finite critical
value of anharmonicity.

In this paper we propose to study this question for the conservative per-
turbed model introduced in [6], [7]. Our results are valid in any dimension
(DHC has only been studied in the one dimensional case). We consider
DHC perturbed by a stochastic noise conserving energy and destroying all
other conservation laws. In view of the numerical simulations of [18] one
would expect the model to become a normal conductor : κN → κ with κ
finite and positive. The behavior of the thermal conductivity is here studied
in the linear response theory framework by using the Green-Kubo formula.
Curiously behavior of the conductivity defined through Green-Kubo formula
has not been studied for DHC. It would be interesting to know what is the
order of divergence of the latter. For the perturbed DHC we obtain uniform
finite positive lower and upper bounds for the d dimensional finite volume
Green-Kubo formula of the thermal conductivity with or without pinning
(Theorem 2) so that the thermal conductivity is always finite and positive.
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3

In particular it shows the presence of the noise is sufficient to destroy local-
ization of eigen-functions in pinned DHC. Linear response approach avoids
the difficulty to deal with a non-equilibrium setting where effects of spec-
tral properties of heat baths could add difficulties as in the case of purely
DHC. In the non-equilibrium setting, we expect that since the Green-Kubo
formula for the thermal conductivity of the perturbed DHC remains finite,
it will not depend on the boundaries. As a second result (Theorem 1) we
show that the homogenized infinite volume Green-Kubo formula κhom. is
well defined, positive and finite.

The paper is organized as follows. In the first section we define the dynam-
ics. In section 3, we give heuristic arguments predicting the equality between
the Green-Kubo formula and the homogenized infinite volume Green-Kubo
formula. The latter is proved to exist and to be finite and positive. In sec-
tion 4 we obtain uniform (in the volume) lower and upper bounds for the
finite volume Green-Kubo formula.

Notations : The canonical basis of R
d is noted (e1, e2, . . . , ed) and the

coordinates of a vector u ∈ R
d are noted (u1, . . . , ud). Its Euclidian norm

|u| is given by |u| =
√

(u1)2 + . . . + (ud)2 and the scalar product of u and v
is u · v.

If N is a positive integer, T
d
N denotes the d-dimensional discrete torus of

length N . We identify T
d
N = (Z/NZ)d, i.e. x = x+kNej for any j = 1, . . . , d

and k ∈ Z.
If F is a function from Z

d (or T
d
N ) into R then the (discrete) gradient of F

in the direction ej is defined by (∇ej
F )(x) = F (x+ej)−F (x) and the Lapla-

cian of F is given by (∆F )(x) =
∑d

j=1 {F (x + ej) + F (x − ej) − 2F (x)}.

2. The dynamics of the closed system

The Hamiltonian of a non homogenous harmonic chain of length N with
periodic boundary conditions is given by

H =
∑

x∈T
d
N

|px|2
2mx

+
1

2

∑

x∈T
d
N

{qx · (νI − ω∆)qx}

where px = mxvx, vx ∈ R
d is the velocity of the particle x and mx >

0 its mass. qx ∈ R
d is the displacement of the atom x with respect to

its equilibrium position. Parameters ω and ν regulate the strength of the
interaction potential V (r) = ωr2 and the strength of the pinning potential
W (q) = νq2. We perturb the harmonic chain by a conservative noise acting
only on the velocities such it conserves the total kinetic energy

∑

x p2
x/(2mx).

We define πx = m
1/2
x vx and the generator of the noise is given by

S =
1

2d2

d
∑

i,j,k=1

∑

x∈T
d
N

[

Y i,j
x,x+ek

]2
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4 CÉDRIC BERNARDIN

with

Y i,j
x,x+ek

= πj
x+ek

∂πi
x
− πi

x∂
πj

x+ek

We consider the stochastic dynamics corresponding to the generator

(1) L = A + γS

where A is the usual Hamiltonian vector field

A =
∑

x∈T
d
N

{

∂H

∂px
· ∂qx − ∂H

∂qx
· ∂px

}

The parameter γ > 0 regulates the strength of the noise. In terms of the
π’s, the Hamiltonian vector field A is given by

A =
∑

x∈T
d
N

{

1
√

mx
πx · ∂qx +

1
√

mx
[ω∆qx − νqx] · ∂πx

}

and the Hamiltonian by

H =
∑

x∈T
d
N

{ |πx|2
2

+ qx(νI − ω∆)qx

}

Energy of atom x is given by

ex =
|px|2
2mx

+
ν|qx|2

2
+

ω

2

∑

y;|y−x|=1

|qy − qx|2

The energy conservation law can be read locally as

ex(t) − ex(0) =

d
∑

k=1

(Jx−ek,x(t) − Jx,x+ek
(t)) = −

d
∑

k=1

(∇ek
Jx−ek,x) (t)

where Jx,x+ek
(t) is the total energy current between x and x+ek up to time

t. This can be written as

(2) Jx,x+ek
(t) =

∫ t

0
jx,x+ek

(s) ds + Mx,x+ek
(t)

In the above Mx,x+ek
(t) are martingales and the instantaneous current jx,x+ek

is given by

jx,x+ek
= ja

x,x+ek
+ γjs

x,x+ek

where ja
x,x+ek

is the Hamiltonian contribution

ja
x,x+ek

= − 1√
mx

πx · (qx+ek
− qx−ek

)

and js
x,x+ek

is the noise contribution

js
x,x+ek

= −1

d
∇ek

(|πx|2)
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5

We consider the closed dynamics with periodic boundary conditions start-
ing from the canonical Gibbs measure with temperature T = β−1

µN
β (dπ, dq) = Z−1

N,β exp (−βH) dπdq

The law of the process starting from µN
β is noted Pβ.

The conductivity in the direction e1 is defined by the Green-Kubo formula
as the limit (when it exists)

(3) κ1,1({mx}) = lim
t→∞

lim
N→∞

1

2T 2t

1

Nd
Eβ









∑

x∈T
d
N

Jx,x+e1
(t)





2



Because of the periodic boundary conditions, since js if a gradient, the
corresponding terms cancel, and we can write

(4)

∑

x Jx,x+e1
(t) =

∫ t
0

∑

x ja
x,x+e1

(s) ds +
∑

x Mx,x+e1
(t)

=
∫ t
0 Je1

(s) ds + Me1
(t)

so that

(tNd)−1
Eβ





[

∑

x

Jx,x+e1
(t)

]2




= (tNd)−1
Eβ

(

[
∫ t

0
Je1

(s)ds

]2
)

+ (tNd)−1
Eβ

(

M2
e1

(t)
)

+ 2(tNd)−1
Eβ

([∫ t

0
Je1

(s) ds

]

Me1
(t)

)

(5)

The third term on the RHS of (5) is zero by a time reversal argument and
the martingale term gives a γ/d contribution (see [3] for a proof).

1

2T 2t

1

Nd
Eβ





[

∑

x

Jx,x+e1
(t)

]2




= (2T 2tNd)−1
Eβ

(

[∫ t

0
Je1

(s)ds

]2
)

+
γ

d

(6)

In order to study the large time behavior of

C(t) = lim
N→∞

(2T 2tNd)−1
Eβ

(

[∫ t

0
Je1

(s)ds

]2
)

we study the asymptotics as λ → 0 of the Laplace transform L(λ) of tC(t)

L(λ) =

∫ ∞

0
e−λttC(t)dt
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6 CÉDRIC BERNARDIN

By stationarity and integration by parts, we have

L(λ) = lim
N→∞

1

λ2T 2

∫ ∞

0
dte−λt

Eβ [Je1
(t)Je1

(0)]

A normal finite conductivity corresponds (in a Tauberian sense) to a
positive finite limit of λ2L(λ) as λ → 0. In this case, the conductivity
κ1,1({mx}) is equal to

(7) κ1,1({mx}) = γ/d + lim
λ→0

lim
N→∞

∫ ∞

0
dte−λtN−d

Eβ [Je1
(t)Je1

(0)] dt

The right hand side of (7) is the sum of two terms. The first one is
only due to the noise and is of no interest. The second one is the contribu-
tion of Hamiltonian dynamics to the conductivity and this is this term we
investigate in the sequel.

All these computations are valid as soon as we can take the infinite volume
limit N → ∞ and then the limit λ → 0. In the homogenous case (mx =
m for all x), one can show that all the limits exist and one can compute
explicitely C(t) (see section 4). In the non homogenous case, we can only
prove such a convergence up to subsequences (see corollary 1). What we are
able to do is to prove upper and lower bounds which indicate a finite and
positive contribution of the Hamiltonian dynamics to the conductivity (see
section 4).

3. Homogenized infinite volume Green-Kubo formula

In this section, we show that the homogenized infinite volume Green-
Kubo formula for the thermal conductivity is well defined, positive and
finite. We give also heuristic arguments showing that for almost all realiza-
tion of masses m = {mx}, the Green-Kubo formula (7) coincides with the
homogenized infinite volume Green-Kubo formula κhom. defined in (9).

Assume that masses m = {mx}x∈Zd are distributed according to an er-
godic stationary probability measure E

∗. A typical configuration in the
phase space is noted ω = (π,q) = ((πx)x∈T

d
N

, (qx)x∈T
d
N

). The masses of the

finite volume dynamics are obtained from the infinite sequence {mx} by the
map identity x ∈ {0, . . . , N − 1}d ⊂ Z

d → T
d
N . For any z ∈ T

d
N and any

function f(ω,m) the translation of f by z is defined by

(τzf)(ω,m) = f(τzω, τzm), τzω = ((πz+x)x, (qz+x)x), (τzm)x = mx+z

Observe that the dynamics is invariant under the action of the group of
translation τz. We indicate the dependance of the instantaneous current on
the masses and on the configuration by

ja
0,e1

(ω,m) =
1

√
m0

π0 · (qe1
− q−e1

)
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7

By translation invariance of the dynamics we have

N−d

∫ t

0
dte−λt

Eβ [Je1
(t)Je1

(0)]

= N−d

∫ t

0
dte−λt

∑

x,y∈T
d
N

Eβ

[

[τxja
0,e1

](ωt,m) [τyj
a
0,e1

](ω0,m)
]

=
1

Nd

∑

x∈T
d
N

FN (τxm)

where

FN (m) =

∫ ∞

0
dte−λt

∑

z∈T
d
N

Eβ

[

ja
0,e1

(ωt,m) [τzj
a
0,e1

](ω0,m)
]

In appendix, we explain how to define the dynamics starting from the
infinite volume Gibbs measure µβ and we show the dynamics is stationary
w.r.t. µβ. The law of the dynamics is noted Pβ.

For fixed positive λ, we conjecture that as N goes to infinity, the finite
volume dynamics is closed to the infinite volume dynamics in the sense that

lim
N→∞

∣

∣

∣

∣

∣

∣

FN (m) −
∫ ∞

0
dte−λt

∑

z∈Zd

Eβ

[

ja
0,e1

(ωt,m) [τzj
a
0,e1

](ω0,m)
]

∣

∣

∣

∣

∣

∣

= 0

Then, by ergodic theorem, we have
(8)

lim
N→∞

N−d

∫ t

0
dte−λt

Eβ [Je1
(t), Je1

(0)] = E
∗





∫ ∞

0
dte−λt

∑

z∈Zd

Eβ

[

ja
0,e1

(t) τzj
a
0,e1

(0)
]





We are not able to prove the convergence (8) but we can prove the fol-
lowing existence theorem for the homogenized infinite volume Green-Kubo
formula.

Theorem 1. Assume that {mx} is stationary under P
∗ and there are posi-

tive constants m and m such that

P
∗(m ≤ mx ≤ m) = 1

The Hamiltonian contribution to the homogenized Green-Kubo formula for
the thermal conductivity κ1,1

hom. − γ/d

(9) κ1,1
hom. − γ/d = lim

λ→0
E
∗





∫ ∞

0
dte−λt

∑

z∈Zd

Eβ

[

ja
0,e1

(t)τzj
a
0,e1

(0)
]





exists, is positive and finite.

en
sl

-0
03

09
07

0,
 v

er
si

on
 1

 - 
5 

Au
g 

20
08



8 CÉDRIC BERNARDIN

Proof. The proof closely follows [9] and [5]. With respect to the self con-
sistent model of [9], the symmetric part of the generator S does not have
a spectral gap. To overcome this difficulty, we prove in lemma 1 that the
antisymmetric part of the resolvent solution is an eigenfunction of S. It
turns out that it is sufficient to conclude the proof.

We define the following semi-inner product on L
2(P∗ ⊗ µβ)

≪ f, g ≫ =
∑

z∈Zd

{E∗ [µβ(fτzg) − µβ(f)µβ(g)]}

= lim
K→∞

1

(2K + 1)d

∑

|x|≤K
|y|≤K

{E
∗ [µβ(τxfτyg) − µβ(f)µβ(g)]}

We denote by L
2
∗ the completion of the space of square integrable local

functions w.r.t. this semi-inner product. The generator L has the decom-
position A + γS in antisymmetric and symmetric part in L

2
∗. The H1 norm

corresponding to the symmetric part is denoted

‖f‖2
1 =≪ f, (−S)f ≫

and H1 is the Hilbert space obtained by the completion of L
2
∗ w.r.t. this

norm.
Let uλ be the solution of the resolvent equation

(10) λuλ − Luλ = ja
0,e1

We have to prove that ≪ uλ, j0,e1
≫ converges as λ goes to 0 and that

the limit is positive and finite.
We multiply (10) by uλ and integrate w.r.t. ≪ ·, · ≫ and we get

λ ≪ uλ, uλ ≫ +γ‖uλ‖2
1 =≪ uλ, ja

0,e1
≫

Since S(ja
0,e1

) = −ja
0,e1

(see lemma 3), by Schwarz inequality, we have

‖uλ‖2
1 ≤ C2γ−1

and

λ ≪ uλ, uλ ≫≤ C2γ−1

Since (uλ)λ is a bounded sequence in H1, we can extract a weakly converging
subsequence in H1. We continue to denote this subsequence (uλ)λ and we
note u0 the limit.

Let uλ(p, q) = us
λ(p, q) + ua

λ(p, q) be the decomposition of uλ in its sym-
metric and antisymmetric part in the p’s. Since ja

0,e1
is antisymmetric in the

p’s, we have that ≪ uλ, ja
0,e1

≫=≪ ua
λ, ja

0,e1
≫. Furthermore S preserves the

parity in p while it is inverted by A. We have the following decomposition

λus
λ − γSus

λ − Aua
λ = 0

µua
µ − γSua

µ − Aus
µ = ja

0,e1
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9

We multiply the first equality by us
µ and the second by ua

λ and we use the
antisymmetry of A. We get

≪ ua
λ, ja

0,e1
≫= µ ≪ ua

µ, ua
µ ≫ +λ ≪ us

λ, us
λ ≫ +γ ≪ uλ, (−S)uµ ≫

In lemma 1, we prove that Sua
λ = −ua

λ. It follows that

≪ ua
λ, ua

λ ≫= ‖ua
λ‖2

1 = ‖uλ‖2
1 − ‖us

λ‖2
1 ≤ C2γ−1

Remark that ua
λ and us

λ converge weakly in H1 respectively to ua
0 and to

us
0. We first take the limit as λ → 0 and then as µ → 0 and we obtain

≪ u0, j
a
0,e1

≫= γ ≪ u0, (−S)u0 ≫
On the other hand, since Sja

0,e1
= −ja

0,e1
, we have

≪ u0, j
a
0,e1

≫= lim
λ→0

≪ uλ, ja
0,e1

≫

= lim
λ→0

[λ ≪ uλ, uλ ≫∗ + ≪ uλ, (−A)uλ ≫ +γ ≪ uλ, (−S)uλ ≫]

= lim
λ→0

[λ ≪ uλ, uλ ≫∗ +γ ≪ uλ, (−S)uλ ≫]

≥ lim
λ→0

λ ≪ uλ, uλ ≫ +γ ≪ u0, (−S)u0 ≫

where the last inequality follows from the weak convergence in H1 of (uλ)λ
to u0. It implies

lim
λ→0

λ ≪ uλ, uλ ≫= 0

so that uλ converges strongly to u0 in H1. Hence ≪ uλ, j0,e1
≫ converges to

γ ≪ u0,−Su0 ≫. Uniqueness of the limit follows by a standard argument.
The positivity and finiteness of the limit is postponed to lemma 2. �

Lemma 1. Let uλ be the solution of the resolvent equation

λuλ − Luλ = ja
0,e1

Let ua
λ the antisymmetric part of uλ with respect to the π’s. ua

λ is such that

Sua
λ = −ua

λ

Proof. Let X be the closure in L
2(µβ) of the space of polynomial functions

in π and q of degree 2. The generator L transforms a polynomial function
in a polynomial function and conserves the degree so that the image of X
under L is included in X. Since ja

0,e1
is in X, uλ is in X. Let ε > 0 and

consider vε a polynomial function of degree 2 such that

µβ([uλ − vε]
2) ≤ ε

One easily shows that

µβ([ua
λ − va

ε ]2) ≤ ε

Moreover, va
ε is of the form

va
ε =

∑

x,y∈Zd

ρ(x, y)πxqy
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10 CÉDRIC BERNARDIN

where ρ is a function with compact support. Since Sπx = −πx, we have
Sva

ε = −va
ε . As ε goes to 0, we get

Sua
λ = −ua

λ

�

4. Lower and upper bounds for the Green-Kubo formula

The canonical measure µN
β with temperature T = β−1 and periodic

boundary conditions on T
d
N is denoted by < · > and the scalar product

associated in L
2(µN

β ) by < ·, · >.

The dynamics is given by (1) and {mx}x∈T
d
N

is a sequence of positive

masses bounded above and below by m and m. The total current in the
first direction e1 is given by

Je1
= ω

∑

z

1√
mz

πz · (qz+e1
− qz−e1

)

Before considering the non homogenous case, we compute briefly the time
current-current correlations in the homogenous case (i.e. mx = m for all x).
Let us define

CN (t) = (2T 2tNd)−1
Eβ

(

[∫ t

0
Je1

(s)ds

]2
)

Since starting from µβ the process is stationary we have

CN (t) =
1

T 2tNd

∫ t

0
ds

∫ s

0
duEβ [Je1

(u),Je1
(0)]

performing two integration by parts, one obtains that the Laplace transform
LN(λ) of tCN (t) is equal to

LN(λ) =
1

λ2NdT 2

∫ ∞

0
dte−λt

Eβ [Je1
(t),Je1

(0)]

This last quantity is equal to

1

λ2T 2Nd
< Je1

, (λ − L)−1
Je1

>

A simple but crucial computation shows that

(λ − L)−1
Je1

=
Je1

λ + γ

so that LN (λ) is given by

LN(λ) =
< Je1

,Je1
>

T 2Ndλ2(λ + γ)
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11

Let DN = DN (ω, ν) be the constant
(11)

DN = T−1ω2
d
∑

k=1

< (qk
e1

− qk
−e1

)2 >=
1

Nd

∑

ξ∈T
d
N

(

4ω2
∑d

j=1 sin2(πξj/N)

ν + 4ω
∑d

j=1 sin2(πξj/N)

)

One computes easily < Je1
,Je1

> and after inversion of the Laplace trans-
form, one gets

CN (t) =
DN

γm

(

1 +
1

γt
(1 − e−γt)

)

As N and then t goes to infinity, it converges to the constant D/(γm) where

(12) D =

∫

ξ∈[0,1]d

(

4ω2
∑d

j=1 sin2(πξj)

ν + 4ω
∑d

j=1 sin2(πξj)

)

dξ1 . . . dξd

One concludes that the thermal conductivity is given by

κ1,1({m}) =
D

γm
+

γ

d

Observe that if the noise becomes weaker (i.e. γ → 0), we obtain a purely
homogenous harmonic chain and the thermal conductivity is infinite.

In the non homogeneous case, we are not able to obtain explicitly the
solution h of the resolvent equation (λ − L)h = Je1

but we obtain upper
and lower bounds for the Laplace transform of the time current-current cor-
relations function which indicate a finite positive Hamiltonian contribution
to the conductivity (for any bounded below and above sequence of masses).
This is the content of the following theorem.

Theorem 2. There exists a positive constant C > 0 independent of λ and
N such that

C−1 ≤ lim inf
λ→0

lim inf
N→∞

∫ ∞

0
e−λtN−d

Eβ[Je1
(t), Je1

(0)]dt

≤ lim sup
λ→0

lim sup
N→∞

∫ ∞

0
e−λtN−d

Eβ[Je1
(t), Je1

(0)]dt ≤ C

(13)

Proof. We have

(14)

∫ ∞

0
e−λtN−d

E[Je1
(t), Je1

(0)]dt =
1

Nd
< Je1

, (λ − L)−1Je1
>

The proof is based on a variational formula for the right hand side of (14)
and a suitable choice of test functions over which the supremum is carried.
We need to introduce Sobolev norms associated to the operator γS. H1,λ

norm is defined by

‖f‖2
1,λ =< (λ − γS)f, f >
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12 CÉDRIC BERNARDIN

and the H−1,λ norm is the dual norm of the H1,λ norm in L
2(µN

β )

‖f‖2
−1,λ =< (λ − γS)−1f, f >= sup

g
{2 < f, g > − < g, (λ − γS)g >}

where the supremum is carried over local smooth functions g(π,q) from

(Rd × R
d)T

d
N into R.

Recall now that the generator L is given by the sum A + γS where A is
antisymmetric and S is symmetric (in L

2(µN
β )). The variational formula is

the following

(15)
〈

Je1
, (λ − L)−1

Je1

〉

= sup
u

{

2 < u,J > −‖u‖2
1,λ − ‖Au‖2

−1,λ

}

where the supremum is carried over the set of smooth functions u(π,q) from

(Rd × R
d)T

d
N .

Upper bound : By neglecting the term ‖Au‖2
−1,λ in the variational

formula (15), we get

< Je1
, (λ − L)−1Je1

>≤ ‖Je1
‖2
−1,λ = (λ + γ)−1 < Je1

,Je1
>

The last equality follows from the fact that SJe1
= −Je1

(see lemma 3).
Since < · > is the Gaussian measure µβ, the π’s are Gaussian product
independent variables and we have

< Je1
,Je1

> = ω2
∑

x,y

∑

k,ℓ

1
√

mxmy

〈

πk
xπℓ

y(q
k
x+e1

− qk
x−e1

)(qℓ
y+e1

− qℓ
y−e1

)
〉

= ω2
∑

x

∑

k

1

mx

〈

(πk
x)2(qk

x+e1
− qk

x−e1
)2
〉

≤ NdDN (ω, ν)T 2m−1

where DN is defined by (11).

Lower bound :

For the lower bound we use again the following variational formula
〈

Je1
, (λ − L)−1

Je1

〉

= sup
u

{

2 < u,Je1
> −‖u‖2

1,λ − ‖Au‖2
−1,λ

}

and we take the test function u in the form

u = ρ
∑

x∈T
d
N

√
mxπx · (qx+e1

− qx−e1
)

with ρ a positive constant. A simple computation shows that

Au = ρ
∑

x∈T
d
N





√

mx+e1

mx
−
√

mx

mx+e1



πx · πx+e1
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13

Moreover, by lemma 3, one has

Au = ρ
(

λ + γ(2 + d−2)
)−1

(λ−γS)





∑

x∈T
d
N





√

mx+e1

mx
−
√

mx

mx+e1



πx · πx+e1





Hence, the H−1,λ norm of Au is easy to compute and given by

‖Au‖2
−1,λ =

〈Au, Au〉
γ(2 + d−2) + λ

This last quantity is equal to

< Au,Au >= ρ2
∑

x∈T
d
N

d
∑

k=1





√

mx

mx+e1

−

√

mx+e1

mx





2
〈

(πk
x)2(πk

x+e1
)2
〉

By lemma 3, one has

‖u‖2
1,λ = < u, (λ − γS)u >= (γ + λ) < u2 >

= (γ + λ)ρ2
∑

x∈T
d
N

d
∑

k=1

mx < (πk
x)2(qk

x+e1
− qk

x−e1
)2 >

and

< u,Je1
>= ρ

∑

x∈T
d
N

d
∑

k=1

< (πk
x)2(qk

x+e1
− qk

x−e1
)2 >

Hence, we get

(16)
1

Nd

〈

Je1
, (λ − L)−1Je1

〉

≥ ρC0 − C1ρ
2

with C0, C1 positive constants given by

C0 = 2DN , C1 = (γ + λ)m̄DN +

dT 2

(

m

m̄
− m̄

m

)2

γ(2 + d−2) + λ

With the optimal choice ρ = C0/2C1 we get

lim inf
λ→0

lim inf
N→∞

∫ ∞

0
e−λtN−d

Eβ[Je1
(t), Je1

(0)]dt ≥ D−2



















γm̄D +

dT 2

(

m

m̄
− m̄

m

)2

γ(2 + d−2)



















−1

with D given by (12). �
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14 CÉDRIC BERNARDIN

Remark 1. 1. As γ → 0, the lower bound obtained is of the form C0γ
and the upper bound of the form C1γ

−1. Moreover the large pinning limit
ν → ∞ gives null upper and lower bounds.
2. The same result can be proved for the microcanonical version of the
Green-Kubo formula meaning with the replacement of the canonical measure
µN

β = Z−1
β exp(−βH) by the microcanonical measure which is nothing else

than the uniform measure on the shell of constant energy
{

H = Ndβ−1
}

.
3. The upper bound is in fact valid for a general disordered anharmonic
chain with interaction potentials V and pinning potential W . The reason is
that we have still S(Je1

) = −Je1
so that the upper bound remains in force as

soon as N−d < Je1
,Je1

>≤ C, which is equivalent to < [V ′(qe1
−q0)]

2 >≤ C
uniformly in N .

Here we deduce from the upper bound obtained for the Laplace transform
of the time current-current correlations function an upper bound for the
function itself.

Corollary 1. We have

(2tNd)−1
Eβ

(

[
∫ t

0
Je1

(s)ds

]2
)

≤ C

γ + t−1

where C is a positive constant depending on the parameters of the system.

Proof. It is a simple consequence of a general argument valid for Markov
processes ([15], lemma 6.1). �

Lemma 2. The Hamiltonian contribution to the infinite volume homoge-
nized Green-Kubo formula κ1,1

hom. − γ/d (see (9)) is positive and finite.

Proof. The proof is a simple rephrasing of the proof of the theorem above.
We have just to replace the inner product < ·, · > by the inner product with
translations ≪ ·, · ≫.

We have

E
∗





∫ ∞

0
dte−λt

∑

z∈Zd

Eβ

[

jm
0,e1

(t)jm
z,z+e1

(0)
]



 =≪ ja
0,e1

, (λ − L)−1ja
0,e1

≫

and again a variational formula for the last term is available

≪ ja
0,e1

, (λ − L)−1ja
0,e1

≫= sup
u

{

2 ≪ u, ja
0,e1

≫ −‖u‖2
1,λ − ‖Au‖2

−1,λ

}

where the supremum is now carried over local smooth function u(π,q) and
H1,λ and H−1,λ norms are defined by

‖f‖2
±1,λ =≪ f, (λ − γS)±1f ≫

To obtain the upper bound, we neglect the term coming from the anti-
symmetric part Au and remark that Sja

0,e1
= −ja

0,e1
. For the lower bound,
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we use the same test function u as in the theorem above:

u = ρ
∑

x∈Zd

√
mxπx · (qx+e1

− qx−e1
)

�

Remark 2. Suppose {mx} forms a stationary sequence of random masses
with law E

∗ and let us denote µ = E
∗(1/m0). Assume that

γ

d
+ lim

λ→0
lim

N→∞

∫ ∞

0
e−λtN−d

E[J(t), J(0)]dt = κ1,1({mx})

exists. We expect κ1,1({mx}) to depend only on the statistics of mx and
not on the particular realization of random masses and to be equal to the
infinite volume homogenized Green-Kubo formula κ1,1

hom. (see (8)). Upper
bounds show in fact that

κ1,1
hom. ≤ κ1,1({1/µ})

where we recall that κ1,1({1/µ}) is the thermal conductivity of the homoge-
nous chain with mass 1/µ (also called in the homogenization literature the
”effective conductivity”). It is an open problem to know if this inequality is
in fact an equality or not.

5. Appendix

Lemma 3. Let x ∈ T
d
N and k, ℓ,m ∈ {1, . . . , d}. We have

• S(πℓ
x) = −πℓ

x

• S(|πx|2) = d−1∆(|π2
x|)

• S(πk
xπℓ

x+em
) = −

(

2 + d−2
)

πk
xπℓ

x+em

Proof. It is a simple computation. �

We prove here the existence of a measurable set Ω0 of initial conditions
with full measure w.r.t. to the infinite volume Gibbs measure µβ such that
the infinite volume dynamics starting from ω ∈ Ω0 exist. This defines
a strongly continuous semigroup (Pt)t≥0 on L

2(Ω0, µβ) with generator L.
Moreover the set of square integrable local smooth functions D is a core for
L. These arguments are by now standard (see [13]) and we repeat them for
the convenience of the reader.

The dynamics is given by the following stochastic differential equations:
(17)
{

dqx = mx
−1/2πxdt

dπx = m
−1/2
x (ω∆qx − νqx)dt − γπxdt +

√
γπx+1dWx −√

γπx−1dWx−1

where {Wx ; x ∈ Z} are independent standard Brownian motions. We note
Ft the σ-algebra generated by {Wx(s), s ≤ t ;x ∈ Z}.
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16 CÉDRIC BERNARDIN

The first problem is do define the infinite volume Gibbs measure µβ.
Indeed, it is well known that

µN
β (q2

0) =











O(1) if ν > 0 or d ≥ 3

O(log N) if ν = 0 and d = 2

O(N) if ν = 0 and d = 1

Hence, in dimension d = 1, 2, if ν = 0, the infinite volume Gibbs measure
is not well defined. To overcome this difficulty we go over the gradient field
η(x,y) = qx − qy, |x − y| = 1, which has zero (discrete) curl. Let χ the set of

vector fields η on Z
d with zero curl. An infinite volume Gibbs measure µ on

χ is defined by the conditions µ(η2
(x,y)) < +∞ and via DLR equations. One

can prove the following lemma

Lemma 4 ([13], theorems 3.1 and 3.2). There exists a unique shift ergodic
Gibbs measure µβ on χ such that

(18)

∫

χ
η(0,ej)dµβ(η) = 0

Clearly the dynamics for (π,q) in (17) can be read as a dynamics for
the gradient field η(x,y). Moreover the quantities of interest like the current
are functions of the η’s. Hence, only the existence of the dynamics for the
gradient field is needed. Nevertheless to simplify the argument we restrict
the proof to the one dimensional pinned case for which µβ(q2

x) < +∞ for
any x ∈ Z.

Let Ω = (R × R)Z be the configuration space equipped with the product
topology. A typical configuration is of the form ω = (πx, qx)x∈Z with πx =

m
−1/2
x px and qx, px the position and momentum of the atom x with mass

mx we assume to be uniformly bounded above an below by finite positive
constants .

Lemma 5 (Existence of the infinite volume dynamics). There exists a mea-
surable set Ω0 ⊂ (R × R)Z with full measure w.r.t. µβ such that for any
initial condition ω(0) ∈ Ω0 there exists a Ft-adapted continuous stochastic
process {ω(t)} which satisfies (17). Moreover, µβ is a stationary probability
measure for {ω(t)}.

Proof. We introduce Ω0 =
{

ω ∈ Ω; ‖ω‖2 =
∑

k∈Z
e−|k|(|πk|2 + |qk|2) < +∞

}

which is a measurable set with full measure w.r.t. µβ. Since the right hand
side of (17) is uniformly Lipschitz continuous w.r.t. the ℓ2 norm ‖ · ‖ an
iteration procedure gives the existence and uniqueness of a strong solution
to (17). The fact that µβ is invariant for {ω(t)} is standard ([13]). �

By this way we define a semigroup (Pt)t≥0 on the Banach space B(Ω0) of
bounded measurable functions on Ω0. For any f ∈ B(Ω0), we have

∀ω ∈ Ω0, (Ptf)(ω) = Eω [f(ωt)]
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where ωt is the strong solution of (17). Moreover (Pt)t is contractive w.r.t.
the L

2-norm associated to µβ. It follows that Pt can be extended to a
semi-group of contraction on L

2(Ω, µβ).
Let D0 be the set of local smooth bounded functions on Ω. By continuity

of the paths ωt and the bounded convergence theorem, we have that for any
φ ∈ D0,

lim
t→0

µβ((Ptφ − φ)2) = 0

Since any function in L
2(Ω, µβ) can be approximated by a sequence of ele-

ments of D0 and Pt is contractive, it follows that Pt is a strongly continuous
semigroup of contractions on L

2(Ω, µβ).
Let D be the space of smooth (not necessarily bounded) square integrable

local functions on Ω. By Itô’s formula, we have that for any φ ∈ D

∀ω ∈ Ω0, (Ptφ)(ω) = (P0φ)(ω) +

∫ t

0
(PsLφ)(ω)ds

where L is the formal generator defined in section 2. This shows that any
φ ∈ D belongs to the domain of the generator L̂ of the L

2-semigroup (Pt)t≥0

and that L and L̂ coincide on D. By lemma 2.11 and proposition 3.1 of [12],

D is a core for L̂. we have proved the following lemma

Lemma 6. There exists a closed extension of L in L
2(Ω, µβ) such that the

space D of square integrable smooth local functions on Ω is a core. This
closed extension is the generator of the strongly continuous semigroup (Pt)t
defined above.
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