126 research outputs found

    The nucleolus directly regulates p53 export and degradation

    Get PDF
    Nucleoli directly regulate p53 export and degradation rather than simply sequestering p53 regulatory factors

    Misregulation of DNA damage repair pathways in HPV-positive head and neck squamous cell carcinoma contributes to cellular radiosensitivity

    Get PDF
    Patients with human papillomavirus type 16 (HPV)-associated oropharyngealsquamous cell carcinomas (OPSCC) display increased sensitivity to radiotherapy andimproved survival rates in comparison to HPV-negative forms of the disease. Howeverthe cellular mechanisms responsible for this characteristic difference are unclear.Here, we have investigated the contribution of DNA damage repair pathways to thein vitro radiosensitivity of OPSCC cell lines. We demonstrate that two HPV-positiveOPSCC cells are indeed more radiosensitive than two HPV-negative OPSCC cells, whichcorrelates with reduced efficiency for the repair of ionising radiation (IR)-inducedDNA double strand breaks (DSB). Interestingly, we show that HPV-positive OPSCCcells consequently have upregulated levels of the proteins XRCC1, DNA polymerase β,PNKP and PARP-1 which are involved in base excision repair (BER) and single strandbreak (SSB) repair. This translates to an increased capacity and efficiency for therepair of DNA base damage and SSBs in these cells. In addition, we demonstratethat HPV-positive but interestingly more so HPV-negative OPSCC display increasedradiosensitivity in combination with the PARP inhibitor olaparib. This suggests thatPARP inhibition in combination with radiotherapy may be an effective treatmentfor both forms of OPSCC, particularly for HPV-negative OPSCC which is relativelyradioresistant

    Facing up to bias in healthcare: The influence of familiarity appearance on hiring decisions

    Get PDF
    Associations between facial appearance and hiring decisions are well-documented within job literature as a source of decision misjudgment with economic and human costs. Notwithstanding, this aspect is yet to be investigated in healthcare. We collected 90 pictures of new-graduates nurses faces to be judged on different facial appearance-based traits by an independent sample. Six months after graduation, the same new-graduates were interviewed about their job situation. Binomial logistic regression was conducted to examine whether facial appearance ratings would predict the probability to be hired as nurse. Results showed that applicants with a face conveying a feeling of familiarity were more likely to be hired. Considering that people might be inclined to these biases during societal crises and the exceptional need to quickly recruit health professionals during COVID-19 pandemic, our study recommends special attention to prevent the influence of facial appearance-based evaluations not reflecting real skills to limit potentially adverse consequences

    Epigenetic changes mediated by polycomb repressive complex 2 and E2a are associated with drug resistance in a mouse model of lymphoma

    Get PDF
    Background: The genetic origins of chemotherapy resistance are well established; however the role of epigenetics in drug resistance is less well understood To investigate mechanisms of drug resistance we performed systematic genetic epigenetic and transcriptomic analyses of an alkylating agent-sensitive murine lymphoma cell line and a series of resistant lines derived by drug dose escalation   Methods: Dose escalation of the alkylating agent mafosfamide was used to create a series of increasingly drugresistant mouse Burkitt's lymphoma cell lines Whole genome sequencing DNA microarrays reduced representation bisulfite sequencing and chromatin immunoprecipitation sequencing were used to identify alterations in DNA sequence mRNA expression CpG methylation and H3K27me3 occupancy respectively that were associated with increased resistance   Results: Our data suggest that acquired resistance cannot be explained by genetic alterations Based on integration of transcriptional profiles with transcription factor binding data we hypothesize that resistance is driven by epigenetic plasticity We observed that the resistant cells had H3K27me3 and DNA methylation profiles distinct from those of the parental lines Moreover we observed DNA methylation changes in the promoters of genes regulated by E2a and members of the polycomb repressor complex 2 (PRC2) and differentially expressed genes were enriched for targets of E2a The integrative analysis considering H3K27me3 further supported a role for PRC2 in mediating resistance By integrating our results with data from the Immunological Genome Project (Immgenorg) we showed that these transcriptional changes track the B-cell maturation axis   Conclusions: Our data suggest a novel mechanism of drug resistance in which E2a and PRC2 drive changes in the B-cell epigenome; these alterations attenuate alkylating agent treatment-induced apoptosi

    Targeting OGG1 and PARG radiosensitises head and neck cancer cells to high-LET protons through complex DNA damage persistence

    Get PDF
    Complex DNA damage (CDD), containing two or more DNA lesions within one or two DNA helical turns, is a signature of ionising radiation (IR) and contributes significantly to the therapeutic effect through cell killing. The levels and complexity of CDD increases with linear energy transfer (LET), however, the specific cellular response to this type of DNA damage and the critical proteins essential for repair of CDD is currently unclear. We performed an siRNA screen of ~240 DNA damage response proteins to identify those specifically involved in controlling cell survival in response to high-LET protons at the Bragg peak, compared to low-LET entrance dose protons which differ in the amount of CDD produced. From this, we subsequently validated that depletion of 8-oxoguanine DNA glycosylase (OGG1) and poly(ADP-ribose) glycohydrolase (PARG) in HeLa and head and neck cancer cells leads to significantly increased cellular radiosensitivity specifically following high-LET protons, whilst no effect was observed after low-LET protons and X-rays. We subsequently confirmed that OGG1 and PARG are both required for efficient CDD repair post-irradiation with high-LET protons. Importantly, these results were also recapitulated using specific inhibitors for OGG1 (TH5487) and PARG (PDD00017273). Our results suggest OGG1 and PARG play a fundamental role in the cellular response to CDD and indicate that targeting these enzymes could represent a promising therapeutic strategy for the treatment of head and neck cancers following high-LET radiation

    The Effects of Perinatal Testosterone Exposure on the DNA Methylome of the Mouse Brain Are Late-Emerging

    Get PDF
    Background The biological basis for sex differences in brain function and disease susceptibility is poorly understood. Examining the role of gonadal hormones in brain sexual differentiation may provide important information about sex differences in neural health and development. Permanent masculinization of brain structure, function, and disease is induced by testosterone prenatally in males, but the possible mediation of these effects by long-term changes in the epigenome is poorly understood. Methods We investigated the organizational effects of testosterone on the DNA methylome and transcriptome in two sexually dimorphic forebrain regions—the bed nucleus of the stria terminalis/preoptic area and the striatum. To study the contribution of testosterone to both the establishment and persistence of sex differences in DNA methylation, we performed genome-wide surveys in male, female, and female mice given testosterone on the day of birth. Methylation was assessed during the perinatal window for testosterone\u27s organizational effects and in adulthood. Results The short-term effect of testosterone exposure was relatively modest. However, in adult animals the number of genes whose methylation was altered had increased by 20-fold. Furthermore, we found that in adulthood, methylation at a substantial number of sexually dimorphic CpG sites was masculinized in response to neonatal testosterone exposure. Consistent with this, testosterone\u27s effect on gene expression in the striatum was more apparent in adulthood. Conclusion Taken together, our data imply that the organizational effects of testosterone on the brain methylome and transcriptome are dramatic and late-emerging. Our findings offer important insights into the long-term molecular effects of early-life hormonal exposure

    TP53 mutations in head and neck cancer cells determine the Warburg phenotypic switch creating metabolic vulnerabilities and therapeutic opportunities for stratified therapies

    Get PDF
    Patients with mutated TP53 have been identified as having comparatively poor outcomes compared to those retaining wild-type p53 in many cancers, including squamous cell carcinomas of the head and neck (SCCHN). We have examined the role of p53 in regulation of metabolism in SCCHN cells and find that loss of p53 function determines the Warburg effect in these cells. Moreover, this metabolic adaptation to loss of p53 function creates an Achilles’ heel for tumour cells that can be exploited for potential therapeutic benefit. Specifically, cells lacking normal wild-type p53 function, whether through mutation or RNAi-mediated downregulation, display a lack of metabolic flexibility, becoming more dependent on glycolysis and losing the ability to increase energy production from oxidative phosphorylation. Thus, cells that have compromised p53 function can be sensitised to ionizing radiation by pre-treatment with a glycolytic inhibitor. These results demonstrate the deterministic role of p53 in regulating energy metabolism and provide proof of principle evidence for an opportunity for patient stratification based on p53 status that can be exploited therapeutically using current standard of care treatment with ionising radiation

    Updates on p53: modulation of p53 degradation as a therapeutic approach

    Get PDF
    The p53 pathway is aberrant in most human tumours with over 50% expressing mutant p53 proteins. The pathway is critically controlled by protein degradation. Here, we discuss the latest developments in the search for small molecules that can modulate p53 pathway protein stability and restore p53 activity for cancer therapy

    The Human Nucleolar Protein FTSJ3 Associates with NIP7 and Functions in Pre-rRNA Processing

    Get PDF
    NIP7 is one of the many trans-acting factors required for eukaryotic ribosome biogenesis, which interacts with nascent pre-ribosomal particles and dissociates as they complete maturation and are exported to the cytoplasm. By using conditional knockdown, we have shown previously that yeast Nip7p is required primarily for 60S subunit synthesis while human NIP7 is involved in the biogenesis of 40S subunit. This raised the possibility that human NIP7 interacts with a different set of proteins as compared to the yeast protein. By using the yeast two-hybrid system we identified FTSJ3, a putative ortholog of yeast Spb1p, as a human NIP7-interacting protein. A functional association between NIP7 and FTSJ3 is further supported by colocalization and coimmunoprecipitation analyses. Conditional knockdown revealed that depletion of FTSJ3 affects cell proliferation and causes pre-rRNA processing defects. The major pre-rRNA processing defect involves accumulation of the 34S pre-rRNA encompassing from site A′ to site 2b. Accumulation of this pre-rRNA indicates that processing of sites A0, 1 and 2 are slower in cells depleted of FTSJ3 and implicates FTSJ3 in the pathway leading to 18S rRNA maturation as observed previously for NIP7. The results presented in this work indicate a close functional interaction between NIP7 and FTSJ3 during pre-rRNA processing and show that FTSJ3 participates in ribosome synthesis in human cells

    The Role of p300 Histone Acetyltransferase in UV-Induced Histone Modifications and MMP-1 Gene Transcription

    Get PDF
    Matrix metalloproteinase (MMP)-1 promotes ultraviolet (UV)-triggered long-term detrimental effects such as cancer formation and premature skin aging. Although histone modifications may play a crucial role in the transcriptional regulation of MMP-1, the relationship between UV-induced histone modification and MMP-1 expression is not completely understood. Here, we identify regulators of histone acetylation that may link UV-mediated DNA damage and MMP-1 induction by UV in cultured human dermal fibroblasts (HDFs) in vitro. UV irradiation of HDFs induced MMP-1 expression and increased the level of phosphorylation of H2AX (γ-H2AX), p53 and the acetylation of histone H3 (acetyl-H3). Total histone deacetylase (HDAC) enzymatic activity was decreased by UV irradiation, while histone acetyltransferase (HAT) activity was increased. Suppression of p300 histone acetyltransferase (p300HAT) activity by the p300HAT inhibitor anacardic acid (AA) or by down-regulation of p300 by siRNA prevented UV-induced MMP-1 expression and inhibited UV-enhanced γ-H2AX, p53 level, and acetyl-H3. Using chromatin immunoprecipitation assays, we observed that γ-H2AX, p53, acetyl-H3, p300 and c-Jun were consistently recruited by UV to a distinct region (−2067/−1768) adjacent to the p300 binding site (−1858/−1845) in the MMP-1 promoter. In addition, these recruitments of γ-H2AX, p53, acetyl-H3, p300 and c-Jun to the p300-2 site were significantly abrogated by post-treatment with AA. Furthermore, overexpression of p300 increased the basal and UV-induced MMP-1 promoter activity. Our results suggest that p300HAT plays a critical role in the transcriptional regulation of MMP-1 by UV
    corecore