207 research outputs found

    Extension of charge-state-distribution calculations for ion-solid collisions towards low velocities and many-electron ions

    Get PDF
    Knowledge of the detailed evolution of the whole charge-state distribution of projectile ions colliding with targets is required in several fields of research such as material science and atomic and nuclear physics but also in accelerator physics, and in particular in regard to the several foreseen large-scale facilities. However, there is a lack of data for collisions in the nonperturbative energy domain and that involve many-electron projectiles. Starting from the etacha model we developed [Rozet, Nucl. Instrum. Methods Phys. Res., Sect. B 107, 67 (1996)10.1016/0168-583X(95)00800-4], we present an extension of its validity domain towards lower velocities and larger distortions. Moreover, the system of rate equations is able to take into account ions with up to 60 orbital states of electrons. The computed data from the different new versions of the etacha code are compared to some test collision systems. The improvements made are clearly illustrated by 28.9MeVu-1Pb56+ ions, and laser-generated carbon ion beams of 0.045 to 0.5MeVu-1, passing through carbon or aluminum targets, respectively. Hence, those new developments can efficiently sustain the experimental programs that are currently in progress on the "next-generation" accelerators or laser facilities.Fil: Lamour, E.. Centre National de la Recherche Scientifique; Francia. Universite de Paris; FranciaFil: Fainstein, Pablo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: Galassi, Mariel Elisa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; ArgentinaFil: Prigent, C.. Centre National de la Recherche Scientifique; Francia. Universite de Paris; FranciaFil: Ramirez, C. A.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; ArgentinaFil: Rivarola, Roberto Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; ArgentinaFil: Rozet, J. P.. Centre National de la Recherche Scientifique; Francia. Universite de Paris; FranciaFil: Trassinelli, M.. Centre National de la Recherche Scientifique; Francia. Universite de Paris; FranciaFil: Vernhet, D.. Centre National de la Recherche Scientifique; Francia. Universite de Paris; Franci

    Electronic temperatures, densities and plasma X-ray emission of a 14.5 GHz Electron-Cyclotron Resonance Ion Source

    Full text link
    We have performed a systematic study of the Bremsstrahlung emission from the electrons in the plasma of a commercial 14.5 GHz Electron-Cyclotron Resonance Ion Source. The electronic spectral temperature and the product of ionic and electronic densities of the plasma are measured by analyzing the Bremsstrahlung spectra recorded for several rare gases (Ar, Kr, Xe) as a function of the injected power. Within our uncertainty, we find an average temperature of ? 48 keV above 100W, with a weak dependency on the injected power and gas composition. Charge state distributions of extracted ion beams have been determined as well, providing a way to disentangle the ionic density from the electronic density. Moreover X-ray emission from highly charged argon ions in the plasma has been observed with a high-resolution mosaic crystal spectrometer, demonstrating the feasibility for high-precision measurements of transition energies of highly charged ions, in particular of the magnetic dipole (M1) transition of He-like of argon ions

    Electron gas polarization effect induced by heavy H-like ions of moderate velocities channeled in a silicon crystal

    Get PDF
    We report on the observation of a strong perturbation of the electron gas induced by 20 MeV/u U91+^{91+} ions and 13 MeV/u Pb81+^{81+} ions channeled in silicon crystals. This collective response (wake effect) in-duces a shift of the continuum energy level by more than 100 eV, which is observed by means of Radiative Electron Capture into the K and L-shells of the projectiles. We also observe an increase of the REC probability by 20-50% relative to the probability in a non-perturbed electron gas. The energy shift is in agreement with calculations using the linear response theory, whereas the local electron density enhancement is much smaller than predicted by the same model. This shows that, for the small values of the adiabaticity parameter achieved in our experiments, the density fluctuations are not strongly localized at the vicinity of the heavy ions

    Ion slowing down and charge exchange at small impact parameters selected by channeling: superdensity effects

    Get PDF
    CASInternational audienceIn two experiments performed with 20-30 MeV/u highly charged heavy ions (Pb56+, U91+) channeled through thin silicon crystals, we observed the original features of superdensity, associated to the glancing collisions with atomic rows undergone by part of the incident projectiles. In particular the very high collision rate yields a quite specific charge exchange regime, that leads to a higher ionization probability than in random conditions. X-ray measurements show that electrons captured in outershells are prevented from being stabilized, which enhances the lifetime of the projectile innershell vacancies. The charge state distributions and the energy loss spectra are compared to Monte-Carlo simulations. These simulations confirm, extend and illustrate the qualitative analysis of the experimental results

    Relative frequencies of inherited retinal dystrophies and optic neuropathies in Southern France: assessment of 21-year data management

    Get PDF
    PURPOSE: Inherited retinal dystrophies (IRDs) and inherited optic neuropathies (IONs) are rare diseases defined by specific clinical and molecular features. The relative prevalence of these conditions was determined in Southern France. METHODS: Patients recruited from a specialized outpatient clinic over a 21-year period underwent extensive clinical investigations and 107 genes were screened by polymerase chain reaction/sequencing. RESULTS: There were 1957 IRD cases (1481 families) distributed in 70% of pigmentary retinopathy cases (56% non-syndromic, 14% syndromic), 20% maculopathies and 7% stationary conditions. Patients with retinitis pigmentosa were the most frequent (47%) followed by Usher syndrome (10.8%). Among non-syndromic pigmentary retinopathy patients, 84% had rod-cone dystrophy, 8% cone-rod dystrophy and 5% Leber congenital amaurosis. Macular dystrophies were encountered in 398 cases (30% had Stargardt disease and 11% had Best disease). There were 184 ION cases (127 families) distributed in 51% with dominant optic neuropathies, 33% with recessive/sporadic forms and 16% with Leber hereditary optic neuropathy. Positive molecular results were obtained in 417/609 families with IRDs (68.5%) and in 27/58 with IONs (46.5%). The sequencing of 5 genes (ABCA4, USH2A, MYO7A, RPGR and PRPH2) provided a positive molecular result in 48% of 417 families with IRDs. Except for autosomal retinitis pigmentosa, in which less than half the families had positive molecular results, about 75% of families with other forms of retinal conditions had a positive molecular diagnosis. CONCLUSIONS: Although gene discovery considerably improved molecular diagnosis in many subgroups of IRDs and IONs, retinitis pigmentosa, accounting for almost half of IRDs, remains only partly molecularly defined

    Impaired complex I repair causes recessive Leber's hereditary optic neuropathy

    Get PDF
    Leber's hereditary optic neuropathy (LHON) is the most frequent mitochondrial disease and was the first to be genetically defined by a point mutation in mitochondrial DNA (mtDNA). A molecular diagnosis is achieved in up to 95% of cases, the vast majority of which are accounted for by 3 mutations within mitochondrial complex I subunit-encoding genes in the mtDNA (mtLHON). Here, we resolve the enigma of LHON in the absence of pathogenic mtDNA mutations. We describe biallelic mutations in a nuclear encoded gene, DNAJC30, in 33 unsolved patients from 29 families and establish an autosomal recessive mode of inheritance for LHON (arLHON), which to date has been a prime example of a maternally inherited disorder. Remarkably, all hallmarks of mtLHON were recapitulated, including incomplete penetrance, male predominance, and significant idebenone responsivity. Moreover, by tracking protein turnover in patient-derived cell lines and a DNAJC30-knockout cellular model, we measured reduced turnover of specific complex I N-module subunits and a resultant impairment of complex I function. These results demonstrate that DNAJC30 is a chaperone protein needed for the efficient exchange of complex I subunits exposed to reactive oxygen species and integral to a mitochondrial complex I repair mechanism, thereby providing the first example to our knowledge of a disease resulting from impaired exchange of assembled respiratory chain subunits
    corecore