1,329 research outputs found

    Dielectric confinement of excitons in type-I and type-II semiconductor nanorods

    Get PDF
    We theoretically study the effect of the dielectric environment on the exciton ground state of CdSe and CdTe/CdSe/CdTe nanorods. We show that insulating environments enhance the exciton recombination rate and blueshift the emission peak by tens of meV. These effects are particularly pronounced for type-II nanorods. In these structures, the dielectric confinement may even modify the spatial distribution of electron and hole charges. A critical electric field is required to separate electrons from holes, whose value increases with the insulating strength of the surroundings.Comment: Journal of Physics: Condensed Matter (in press

    Emission spectrum of quasi-resonant laterally coupled quantum dots

    Get PDF
    We calculate the emission spectrum of neutral and charged excitons in a pair of laterally coupled InGaAs quantum dots with nearly degenerate energy levels. As the interdot distance decreases, a number of changes take place in the emission spectrum which can be used as indications of molecular coupling. These signatures ensue from the stronger tunnel-coupling of trions as compared to that of neutral excitons.Comment: 7 pages, 7 figure

    Methods for the Construction of Membership Functions

    Get PDF

    Comparing online with offline citizen engagement for climate change: findings from Austria, Germany and Spain

    Get PDF
    The aim of this paper is to study the expectations of environmental senior managers, as experts in this field, about the effect of e-participation in the fight against climate change. Their experiences in, and the fulfillment of their expectations about, citizen participation in local government environmental programs have been analyzed through different questionnaires in order to answer the following research questions. What effects can be expected from citizen participation in environmental programs? What conditions are necessary for, and what barriers are there to, successful participation processes? Is e-participation more effective than traditional citizen participation? The results confirm that e-participation is only an enabler of citizen engagement in participation processes, but it does not overcome all the barriers to these processes. The success of citizen participation cannot be guaranteed merely by introducing ICTs. The integration of e-participation with traditional offline tools for citizen participation is needed

    An assessment for UAS depart and approach operations

    Get PDF
    Unmanned Aerial Systems (UAS) have great potential to be used in a wide variety of civil applications such as environmental applications, emergency situations, surveillance tasks and more. The development of Flight Control Systems (FCS) coupled with the availability of other Commercial Off-The Shelf (COTS) components is enabling the introduction of UAS into the civil market. The sophistication of existing FCS is also making these systems accessible to end users with little aeronautics expertise. However, much work remains to be done to deliver systems that can be properly integrated in standard aeronautical procedures used by manned aviation. In previous research advances have been proposed in the flight plan capabilities by offering semantically much richer constructs than those present in most current UAS autopilots. The introduced flight plan is organized as a set of stages, each one corresponding to a different flight phase. Each stage contains a structured collection of legs inspired by current practices in Area Navigation (RNAV). However, the most critical parts of any flight, the depart and approach operations in an integrated airspace remain mostly unexplored. This paper introduces an assessment of both operations for UAS operating in VFR and IFR modes. Problems and potential solutions are proposed, as well as an automating strategy that should greatly reduce pilot workload. Although th

    UAS pilot support for departure, approach and airfield operations

    Get PDF
    Unmanned Aerial Systems (UAS) have great potential to be used in a wide variety of civil applications such as environmental applications, emergency situations, surveillance tasks and more. The development of Flight Control Systems (FCS) coupled with the availability of other Commercial Off-The Shelf (COTS) components is enabling the introduction of UAS into the civil market. The sophistication of existing FCS is also making these systems accessible to end users with little aeronautics expertise. However, much work remains to be done to deliver systems that can be properly integrated in standard aeronautical procedures used by manned aviation

    Investigation of acceptor levels and hole scattering mechanisms in p-gallium selenide by means of transport measurements under pressure

    Full text link
    The effect of pressure on acceptor levels and hole scattering mechanisms in p-GaSe is investigated through Hall effect and resistivity measurements under quasi-hydrostatic conditions up to 4 GPa. The pressure dependence of the hole concentration is interpreted through a carrier statistics equation with a single (nitrogen) or double (tin) acceptor whose ionization energies decrease under pressure due to the dielectric constant increase. The pressure effect on the hole mobility is also accounted for by considering the pressure dependencies of both the phonon frequencies and the hole-phonon coupling constants involved in the scattering rates.Comment: 13 pages, Latex, 4 ps figures. to appear in High Pressure Research 69 (1997

    Depart and approach procedures for UAS in a VFR environment

    Get PDF
    This paper assesses the depart and approach operations of Unmanned Aircraft Systems (UAS) in one of the most challenging scenarios: when flying under Visual Flight Rules (VFR). Inspired by some existing procedures for (manned) general aviation, some automatic and predefined procedures for UAS are proposed. Hence, standardized paths to specific waypoints close to the airport are defined for depart operations, just before starting the navigation phase. Conversely, and for the approach maneuvers, it is foreseen a first integration into a holding pattern near the landing runway (ideally above it) followed by a standard VFR airfield traffic pattern. This paper discusses the advantages of these operations which aim at minimizing possible conflicts with other existing aircraft while reducing the Pilot-in-Command workload. Finally, some preliminary simulations are shown where these procedures have been successfully tested with simulated surrounding traffic

    Isospin phases of vertically coupled double quantum rings under the influence of perpendicular magnetic fields

    Get PDF
    Vertically coupled double quantum rings submitted to a perpendicular magnetic field BB are addressed within the local spin-density functional theory. We describe the structure of quantum ring molecules containing up to 40 electrons considering different inter-ring distances and intensities of the applied magnetic field. When the rings are quantum mechanically strongly coupled, only bonding states are occupied and the addition spectrum of the artificial molecules resembles that of a single quantum ring, with some small differences appearing as an effect of the magnetic field. Despite the latter has the tendency to flatten the spectra, in the strong coupling limit some clear peaks are still found even when B≠0B\neq 0 that can be interpretated from the single-particle energy levels analogously as at zero applied field, namely in terms of closed-shell and Hund's-rule configurations. Increasing the inter-ring distance, the occupation of the first antibonding orbitals washes out such structures and the addition spectra become flatter and irregular. In the weak coupling regime, numerous isospin oscillations are found as a function of BB.Comment: 27 pages, 11 figures. To be published in Phys. Rev.

    High pressure oxidation of dimethoxymethane

    Get PDF
    The oxidation of dimethoxymethane (DMM) has been studied under a wide range of temperatures (373-1073 K), pressures (20-60 bar) and air excess ratios (¿ = 0.7, 1 and 20), from both experimental and modeling points of view. Experimental results have been interpreted and analyzed in terms of a detailed gas-phase chemical kinetic mechanism for describing the DMM oxidation. The results show that the DMM oxidation regime for 20, 40 and 60 bar is very similar for both reducing and stoichiometric conditions. For oxidizing conditions, a plateau in the DMM, CO and CO2 concentration profiles as a function of the temperature can be observed. This zone seems to be associated with the peroxy intermediate, CH3OCH2O2, whose formation and consumption reactions appear to be important for the description of DMM conversion under high pressure and high oxygen concentration conditions
    • …
    corecore