1,899 research outputs found

    Ternary cluster decay within the liquid drop model

    Get PDF
    Longitudinal ternary and binary fission barriers of 36^{36}Ar, 56^{56}Ni and 252^{252}Cf nuclei have been determined within a rotational liquid drop model taking into account the nuclear proximity energy. For the light nuclei the heights of the ternary fission barriers become competitive with the binary ones at high angular momenta since the maximum lies at an outer position and has a much higher moment of inertia.Comment: Talk presented at the 9th International Conference on Clustering Aspects of Nuclear Structure and Dynamics (CLUSTERS'07

    FUSE observations of G226-29: First detection of the H_2 quasi-molecular satellite at 1150A

    Full text link
    We present new FUV observations of the pulsating DA white dwarf G226-29 obtained with the Far Ultraviolet Spectroscopic Explorer (FUSE). This ZZ Ceti star is the brightest one of its class and the coolest white dwarf observed by FUSE. We report the first detection of the broad quasi-molecular collision-induced satellite of Ly-beta at 1150 A, an absorption feature that is due to transitions which take place during close collisions of hydrogen atoms. The physical interpretation of this feature is based on recent progress of the line broadening theory of the far wing of Ly-beta. This predicted feature had never been observed before, even in laboratory spectra.Comment: Accepted for publication in ApJ Letters; 6 pages, 3 figure

    A North American Arctic Aerosol Climatology using Ground-based Sunphotometry

    Get PDF
    The Arctic is known as a key area for the detection of climate changes and atmospheric pollution on a global scale. In this paper we describe a new Canadian sunphotometer network called AEROCAN, whose primary mandate is to establish a climatology of atmospheric aerosols. This network is part of AERONET, the worldwide federated sunphotometer network managed by the NASA Goddard Space Flight Center. The potential of sunphotometer data from the AERONET/AEROCAN network for monitoring of Arctic aerosols is illustrated, using examples of the multiyear variation of aerosol optical properties and atmospheric precipitable water vapour content at some stations, and in particular at Bonanza Creek, Alaska since 1994. Despite its sparse spatial density, the network represents an important tool for monitoring the spatio-temporal variation of Arctic aerosols. It also represents an important source of independent aerosol data, which we feel should be further developed in northern areas to improve our understanding of how atmospheric aerosols influence global climate.L'Arctique est reconnu comme une région clé pour la détection des changements climatiques et de la pollution atmosphérique à l'échelle planétaire. Cet article présente un nouveau réseau canadien de photomètres solaires (AEROCAN) dont le mandat principal est d'établir une climatologie des aérosols atmosphériques. Ce réseau est intégré au réseau fédéré mondial de photomètres solaires AERONET géré par le Centre des vols spatiaux Goddard de la NASA. Le potentiel des données héliophotométriques générées par le réseau AERONET/AEROCAN pour la surveillance des aérosols dans l'Arctique est illustré à l'aide d'exemples de la variation pluriannuelle des paramètres optiques des aérosols et du contenu en vapeur d'eau atmosphérique précipitable à diverses stations, en particulier à Bonanza Creek (Alaska) depuis 1994. Malgré sa faible densité spatiale, le réseau représente un outil important pour la surveillance de la variation spatio-temporelle des aérosols arctiques. Il représente en outre une source majeure de données indépendantes sur les aérosols, données dont la provenance devrait, selon nous, englober les régions boréales afin que nous ayons une meilleure compréhension de l'influence des aérosols atmosphériques sur le climat de la planète

    Thermalization of coupled atom-light states in the presence of optical collisions

    Full text link
    The interaction of a two-level atomic ensemble with a quantized single mode electromagnetic field in the presence of optical collisions (OC) is investigated both theoretically and experimentally. The main accent is made on achieving thermal equilibrium for coupled atom-light states (in particular dressed states). We propose a model of atomic dressed state thermalization that accounts for the evolution of the pseudo-spin Bloch vector components and characterize the essential role of the spontaneous emission rate in the thermalization process. Our model shows that the time of thermalization of the coupled atom-light states strictly depends on the ratio of the detuning and the resonant Rabi frequency. The predicted time of thermalization is in the nanosecond domain and about ten times shorter than the natural lifetime at full optical power in our experiment. Experimentally we are investigating the interaction of the optical field with rubidium atoms in an ultra-high pressure buffer gas cell under the condition of large atom-field detuning comparable to the thermal energy in frequency units. In particular, an observed detuning dependence of the saturated lineshape is interpreted as evidence for thermal equilibrium of coupled atom-light states. A significant modification of sideband intensity weights is predicted and obtained in this case as well.Comment: 14 pages, 12 figures; the content was edite

    Anisotropic nonlinear elasticity in a spherical bead pack: influence of the fabric anisotropy

    Full text link
    Stress-strain measurements and ultrasound propagation experiments in glass bead packs have been simultaneously conducted to characterize the stress-induced anisotropy under uniaxial loading. These measurements, realized respectively with finite and incremental deformations of the granular assembly, are analyzed within the framework of the effective medium theory based on the Hertz-Mindlin contact theory. Our work shows that both compressional and shear wave velocities and consequently the incremental elastic moduli agree fairly well with the effective medium model by Johnson et al. [J. Appl. Mech. 65, 380 (1998)], but the anisotropic stress ratio resulting from finite deformation does not at all. As indicated by numerical simulations, the discrepancy may arise from the fact that the model doesn't properly allow the grains to relax from the affine motion approximation. Here we find that the interaction nature at the grain contact could also play a crucial role for the relevant prediction by the model; indeed, such discrepancy can be significantly reduced if the frictional resistance between grains is removed. Another main experimental finding is the influence of the inherent anisotropy of granular packs, realized by different protocols of the sample preparation. Our results reveal that compressional waves are more sensitive to the stress-induced anisotropy, whereas the shear waves are more sensitive to the fabric anisotropy, not being accounted in analytical effective medium models.Comment: 9 pages, 8 figure

    Kraus representation in the presence of initial correlations

    Full text link
    We examine the validity of the Kraus representation in the presence of initial correlations and show that it is assured only when a joint dynamics is locally unitary.Comment: REVTeX4, 12 page

    Reconstructing the density operator by using generalized field quadratures

    Full text link
    The Wigner function for one and two-mode quantum systems is explicitely expressed in terms of the marginal distribution for the generic linearly transformed quadratures. Then, also the density operator of those systems is written in terms of the marginal distribution of these quadratures. Some examples to apply this formalism, and a reduction to the usual optical homodyne tomography are considered.Comment: 17 pages, Latex,accepted by Quantum and Semiclassical Optic

    XMM-Newton Optical Monitor observations of LMC X-3

    Get PDF
    We study the optical counterpart of the black-hole X-ray binary LMC X-3, by using XMM-Newton/OM observations carried out during a low-hard X-ray state. We derive a better constraint for the temperature, mass and radius of the companion star, and we show that the star is likely to be a ~ B5 subgiant filling its Roche lobe. Taking into account the effect of X-ray irradiation, we suggest a value f_M = (1.5 +/- 0.3) M_sun for the mass function in this system, lower than previously thought; we provide a more accurate lower limit to the mass of the compact object.Comment: accepted for publication in the special XMM-Newton issue of A&A
    • …
    corecore