6,429 research outputs found

    Coordinated Analysis of an Ion Irradiated Carbonaceous Chondrite Suggests Complex Space Weathering Effects

    Get PDF
    Surfaces of airless planetary bodies are exposed to micrometeorite bombardment and solar wind irradiation which alter the microstructural, compositional, and optical properties of regoliths over time. These processes are collectively known as space weathering, and they complicate the interpretation of remote sensing data and the subsequent characterization of airless surfaces. Within the next 5 years, NASAs OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, Security, Regolith Explorer) and JAXA (Japan Aerospace Exploration Agency)s Hayabusa2 missions will return samples from C-type asteroids Bennu and Ryugu, respectively. Compared to the Moon and S-type asteroids, our understanding of the space weathering of C-complex asteroids is limited. In order to maximize scientific return from remote sensing data and to prepare for the analysis of returned samples from these missions, we must better understand the effects of space weathering on hydrated, organic-rich materials. We can do so by simulating these processes in the laboratory. In this study, we simulate solar wind exposure through ion irradiation of the CM2 carbonaceous chondrite Murchison - a suitable analog for C-complex asteroids. Here, we present coordinated analyses of a sample before and after ion irradiation

    What determines the density structure of molecular clouds? A case study of Orion B with <i>Herschel</i>

    Get PDF
    A key parameter to the description of all star formation processes is the density structure of the gas. In this Letter, we make use of probability distribution functions (PDFs) of Herschel column density maps of Orion B, Aquila, and Polaris, obtained with the Herschel Gould Belt survey (HGBS). We aim to understand which physical processes influence the PDF shape, and with which signatures. The PDFs of Orion B (Aquila) show a lognormal distribution for low column densities until AV ~ 3 (6), and a power-law tail for high column densities, consistent with a ρα r-2 profile for the equivalent spherical density distribution. The PDF of Orion B is broadened by external compression due to the nearby OB stellar aggregates. The PDF of a quiescent subregion of the non-star-forming Polaris cloud is nearly lognormal, indicating that supersonic turbulence governs the density distribution. But we also observe a deviation from the lognormal shape at AV > 1 for a subregion in Polaris that includes a prominent filament. We conclude that (1) the point where the PDF deviates from the lognormal form does not trace a universal AV -threshold for star formation, (2) statistical density fluctuations, intermittency, and magnetic fields can cause excess from the lognormal PDF at an early cloud formation stage, (3) core formation and/or global collapse of filaments and a non-isothermal gas distribution lead to a power-law tail, and (4) external compression broadens the column density PDF, consistent with numerical simulations

    The Discovery and Nature of Optical Transient CSS100217:102913+404220

    Get PDF
    We report on the discovery and observations of the extremely luminous optical transient CSS100217:102913+404220 (CSS100217 hereafter). Spectroscopic observations show this transient was coincident with a galaxy at redshift z=0.147, and reached an apparent magnitude of V ~ 16.3. After correcting for foreground Galactic extinction we determine the absolute magnitude to be M_V =-22.7 approximately 45 days after maximum light. Based on our unfiltered optical photometry the peak optical emission was L = 1.3 x 10^45 erg s^-1, and over a period of 287 rest-frame days had an integrated bolometric luminosity of 1.2 x 10^52 erg. Analysis of the pre-outburst SDSS spectrum of the source shows features consistent with a Narrow-line Seyfert1 (NLS1) galaxy. High-resolution HST and Keck followup observations show the event occurred within 150pc of nucleus of the galaxy, suggesting a possible link to the active nuclear region. However, the rapid outburst along with photometric and spectroscopic evolution are much more consistent with a luminous supernova. Line diagnostics suggest that the host galaxy is undergoing significant star formation. We use extensive follow-up of the event along with archival CSS and SDSS data to investigate the three most likely sources of such an event; 1) an extremely luminous supernova; 2) the tidal disruption of a star by the massive nuclear black hole; 3) variability of the central AGN. We find that CSS100217 was likely an extremely luminous type IIn supernova that occurred within range of the narrow-line region of an AGN. We discuss how similar events may have been missed in past supernova surveys because of confusion with AGN activity.Comment: submitted to Ap

    Identification of pathways to high-level vancomycin resistance in <i>Clostridioides difficile</i> that incur high fitness costs in key pathogenicity traits

    Get PDF
    Clostridioides difficile is an important human pathogen, for which there are very limited treatment options, primarily the glycopeptide antibiotic vancomycin. In recent years, vancomycin resistance has emerged as a serious problem in several gram-positive pathogens, but high-level resistance has yet to be reported for C. difficile, although it is not known if this is due to constraints upon resistance evolution in this species. Here, we show that resistance to vancomycin can evolve rapidly under ramping selection but is accompanied by fitness costs and pleiotropic trade-offs, including sporulation defects that would be expected to severely impact transmission. We identified 2 distinct pathways to resistance, both of which are predicted to result in changes to the muropeptide terminal D-Ala-D-Ala that is the primary target of vancomycin. One of these pathways involves a previously uncharacterised D,D-carboxypeptidase, expression of which is controlled by a dedicated two-component signal transduction system. Our findings suggest that while C. difficile is capable of evolving high-level vancomycin resistance, this outcome may be limited clinically due to pleiotropic effects on key pathogenicity traits. Moreover, our data identify potential mutational routes to resistance that should be considered in genomic surveillance.</p
    corecore