42 research outputs found

    MucR binds multiple target sites in the promoter of its own gene and is a heat-stable protein: Is MucR a H-NS-like protein?

    Get PDF
    The protein MucR from Brucella spp. is involved in the expression regulation of genes necessary for host interaction and infection. MucR is a member of the Ros/MucR family, which comprises prokaryotic zinc-finger proteins and includes Ros from Agrobacterium tumefaciens and the Ml proteins from Mesorhizobium loti. MucR from Brucella spp. can regulate the expression of virulence genes and repress its own gene expression. Despite the well-known role played by MucR in the repression of its own gene, no target sequence has yet been identified in the mucR promoter gene. In this study, we provide the first evidence that MucR from Brucella abortus binds more than one target site in the promoter region of its own gene, suggesting a molecular mechanism by which this protein represses its own expression. Furthermore, a circular dichroism analysis reveals that MucR is a heat-stable protein. Overall, the results of this study suggest that MucR might resemble a H-NS protein

    Rhodococcus equi's Extreme Resistance to Hydrogen Peroxide Is Mainly Conferred by One of Its Four Catalase Genes

    Get PDF
    Rhodococcus equi is one of the most widespread causes of disease in foals aged from 1 to 6 months. R. equi possesses antioxidant defense mechanisms to protect it from reactive oxygen metabolites such as hydrogen peroxide (H(2)O(2)) generated during the respiratory burst of phagocytic cells. These defense mechanisms include enzymes such as catalase, which detoxify hydrogen peroxide. Recently, an analysis of the R. equi 103 genome sequence revealed the presence of four potential catalase genes. We first constructed \u394katA-, \u394katB-, \u394katC-and \u394katD-deficient mutants to study the ability of R. equi to survive exposure to H(2)O(2)in vitro and within mouse peritoneal macrophages. Results showed that \u394katA and, to a lesser extent \u394katC, were affected by 80 mM H(2)O(2). Moreover, katA deletion seems to significantly affect the ability of R. equi to survive within murine macrophages. We finally investigated the expression of the four catalases in response to H(2)O(2) assays with a real time PCR technique. Results showed that katA is overexpressed 367.9 times (\ub1122.6) in response to exposure to 50 mM of H(2)O(2) added in the stationary phase, and 3.11 times (\ub10.59) when treatment was administered in the exponential phase. In untreated bacteria, katB, katC and katD were overexpressed from 4.3 to 17.5 times in the stationary compared to the exponential phase. Taken together, our results show that KatA is the major catalase involved in the extreme H(2)O(2) resistance capability of R. equi

    Factors Associated with the Acquisition and Severity of Gestational Listeriosis

    Get PDF
    Gravid mammals are more prone to listeriosis than their nongravid counterparts. However, many features of the disease in gravid animals are not well defined. We determined, in mice, that increased susceptibility to lethal infection following oral inoculation begins surprisingly early in pregnancy and extends through embryonic development. Pregnancy did not demonstrably increase the spread of listeriae from the intestine to the liver and spleen in the initial 96 h period post inoculation. Consequently, it appeared that gravid animals were competent to contain an enteric infection, but in those instances where escape did occur, a lethal outcome was more likely. Interestingly, colonic colonization level and prevalence, measured 96 h post inoculation, was significantly higher in gravid individuals. In terms of human risk factors for listeriosis, our results suggest that the window of listeriosis susceptibility afforded by pregnancy may be open longer than previously appreciated. Our results also suggest that while gravid animals are competent to contain an enteric infection, enteric carriage rate may be more of a factor in defining disease incidence than previously considered

    Tobacco Smoke Augments Porphyromonas gingivalis - Streptococcus gordonii Biofilm Formation

    Get PDF
    Smoking is responsible for the majority of periodontitis cases in the US and smokers are more susceptible than non-smokers to infection by the periodontal pathogen Porphyromonas gingivalis. P. gingivalis colonization of the oral cavity is dependent upon its interaction with other plaque bacteria, including Streptococcus gordonii. Microarray analysis suggested that exposure of P. gingivalis to cigarette smoke extract (CSE) increased the expression of the major fimbrial antigen (FimA), but not the minor fimbrial antigen (Mfa1). Therefore, we hypothesized that CSE promotes P. gingivalis-S. gordonii biofilm formation in a FimA-dependent manner. FimA total protein and cell surface expression were increased upon exposure to CSE whereas Mfa1 was unaffected. CSE exposure did not induce P. gingivalis auto-aggregation but did promote dual species biofilm formation, monitored by microcolony numbers and depth (both, p<0.05). Interestingly, P. gingivalis biofilms grown in the presence of CSE exhibited a lower pro-inflammatory capacity (TNF-α, IL-6) than control biofilms (both, p<0.01). CSE-exposed P. gingivalis bound more strongly to immobilized rGAPDH, the cognate FimA ligand on S. gordonii, than control biofilms (p<0.001) and did so in a dose-dependent manner. Nevertheless, a peptide representing the Mfa1 binding site on S. gordonii, SspB, completely inhibited dual species biofilm formation. Thus, CSE likely augments P. gingivalis biofilm formation by increasing FimA avidity which, in turn, supports initial interspecies interactions and promotes subsequent high affinity Mfa1-SspB interactions driving biofilm growth. CSE induction of P. gingivalis biofilms of limited pro-inflammatory potential may explain the increased persistence of this pathogen in smokers. These findings may also be relevant to other biofilm-induced infectious diseases and conditions

    Promotion of Intestinal Peristalsis by Bifidobacterium spp. Capable of Hydrolysing Sennosides in Mice

    Get PDF
    BACKGROUND:While there are a variety of identifiable causes of constipation, even idiopathic constipation has different possible mechanisms. Sennosides, the main laxative constituents of Daio, an ancient Kampo medicine, are prodrugs that are converted to an active principle, rheinanthrone, by intestinal microbiota. In this study, we aimed to determine the sennoside hydrolysis ability of lactic acid bacterial strains and bifidobacteria in the intestine and to investigate their effect on intestinal peristalsis in mice. METHODOLOGY/PRINCIPAL FINDINGS:A total of 88 lactic acid bacterial strains and 47 bifidobacterial strains were evaluated for their ability to hydrolyze sennosides. Our results revealed that 4 strains, all belonging to the genus Bifidobacterium, had strong sennoside hydrolysis ability, exhibiting a decrease of >70% of sennoside content. By thin-layer chromatography analysis, rheinanthrone was detected in the medium cultured with B. pseudocatenulatum LKM10070 and B. animalis subsp. lactis LKM512. The fecal sennoside contents significantly (P<0.001) decreased upon oral administration of these strains as compared with the control. Intestinal peristalsis activity was measured by the moved distance of the charcoal powder administered orally. The distance travelled by the charcoal powder in LKM512-treated mice was significantly longer than that of control (P<0.05). Intestinal microbiota were analysed by real-time PCR and terminal-restriction fragment length polymorphism. The diversity of the intestinal microbiota was reduced by kanamycin treatment and the diversity was not recovered by LKM512 treatment. CONCLUSION/SIGNIFICANCE:We demonstrated that intestinal peristalsis was promoted by rheinanthrone produced by hydrolysis of sennoside by strain LKM512 and LKM10070

    Diversity of Melissococcus plutonius from Honeybee Larvae in Japan and Experimental Reproduction of European Foulbrood with Cultured Atypical Isolates

    Get PDF
    European foulbrood (EFB) is an important infectious disease of honeybee larvae, but its pathogenic mechanisms are still poorly understood. The causative agent, Melissococcus plutonius, is a fastidious organism, and microaerophilic to anaerobic conditions and the addition of potassium phosphate to culture media are required for growth. Although M. plutonius is believed to be remarkably homologous, in addition to M. plutonius isolates with typical cultural characteristics, M. plutonius-like organisms, with characteristics seemingly different from those of typical M. plutonius, have often been isolated from diseased larvae with clinical signs of EFB in Japan. Cultural and biochemical characterization of 14 M. plutonius and 19 M. plutonius-like strain/isolates revealed that, unlike typical M. plutonius strain/isolates, M. plutonius-like isolates were not fastidious, and the addition of potassium phosphate was not required for normal growth. Moreover, only M. plutonius-like isolates, but not typical M. plutonius strain/isolates, grew anaerobically on sodium phosphate-supplemented medium and aerobically on some potassium salt-supplemented media, were positive for β-glucosidase activity, hydrolyzed esculin, and produced acid from L-arabinose, D-cellobiose, and salicin. Despite the phenotypic differences, 16S rRNA gene sequence analysis and DNA-DNA hybridization demonstrated that M. plutonius-like organisms were taxonomically identical to M. plutonius. However, by pulsed-field gel electrophoresis analysis, these typical and atypical (M. plutonius-like) isolates were separately grouped into two genetically distinct clusters. Although M. plutonius is known to lose virulence quickly when cultured artificially, experimental infection of representative isolates showed that atypical M. plutonius maintained the ability to cause EFB in honeybee larvae even after cultured in vitro in laboratory media. Because the rapid decrease of virulence in cultured M. plutonius was a major impediment to elucidation of the pathogenesis of EFB, atypical M. plutonius discovered in this study will be a breakthrough in EFB research

    Nucleolin, a Shuttle Protein Promoting Infection of Human Monocytes by Francisella tularensis

    Get PDF
    International audienceWe herein confirm the importance of nucleolin expression for LVS binding and its specificity as nucleolin is not involved in binding of another intracellular pathogen as L. monocytogenes or an inert particle. Association of nucleolin with F. tularensis during infection continues intracellularly after endocytosis of the bacteria. The present work therefore unravels for the first time the presence of nucleolin in the phagosomal compartment of macrophages

    Genomotyping of Coxiella burnetii Using Microarrays Reveals a Conserved Genomotype for Hard Tick Isolates

    Get PDF
    C. burnetii is a Gram-negative intracellular Y-proteobacteria that causes the zoonotic disease Q fever. Q fever can manifest as an acute or chronic illness. Different typing methods have been previously developed to classify C. burnetii isolates to explore its pathogenicity. Here, we report a comprehensive genomotyping method based on the presence or absence of genes using microarrays. The genomotyping method was then tested in 52 isolates obtained from different geographic areas, different hosts and patients with different clinical manifestations. The analysis revealed the presence of 10 genomotypes organized into 3 groups, with a topology congruent with that obtained through multi-spacer typing. We also found that only 4 genomotypes were specifically associated with acute Q fever, whereas all of the genomotypes could be associated to chronic human infection. Serendipitously, the genomotyping results revealed that all hard tick isolates, including the Nine Mile strain, belong to the same genomotype

    Genetically Engineered Alginate Lyase-PEG Conjugates Exhibit Enhanced Catalytic Function and Reduced Immunoreactivity

    Get PDF
    Alginate lyase enzymes represent prospective biotherapeutic agents for treating bacterial infections, particularly in the cystic fibrosis airway. To effectively deimmunize one therapeutic candidate while maintaining high level catalytic proficiency, a combined genetic engineering-PEGylation strategy was implemented. Rationally designed, site-specific PEGylation variants were constructed by orthogonal maleimide-thiol coupling chemistry. In contrast to random PEGylation of the enzyme by NHS-ester mediated chemistry, controlled mono-PEGylation of A1-III alginate lyase produced a conjugate that maintained wild type levels of activity towards a model substrate. Significantly, the PEGylated variant exhibited enhanced solution phase kinetics with bacterial alginate, the ultimate therapeutic target. The immunoreactivity of the PEGylated enzyme was compared to a wild type control using in vitro binding studies with both enzyme-specific antibodies, from immunized New Zealand white rabbits, and a single chain antibody library, derived from a human volunteer. In both cases, the PEGylated enzyme was found to be substantially less immunoreactive. Underscoring the enzyme's potential for practical utility, >90% of adherent, mucoid, Pseudomonas aeruginosa biofilms were removed from abiotic surfaces following a one hour treatment with the PEGylated variant, whereas the wild type enzyme removed only 75% of biofilms in parallel studies. In aggregate, these results demonstrate that site-specific mono-PEGylation of genetically engineered A1-III alginate lyase yielded an enzyme with enhanced performance relative to therapeutically relevant metrics.Cystic Fibrosis Foundation (Research Development Program)National Center for Research Resources (U.S.) (P20RR018787-06

    DNA Clasping by Mycobacterial HU: The C-Terminal Region of HupB Mediates Increased Specificity of DNA Binding

    Get PDF
    BACKGROUND: HU a small, basic, histone like protein is a major component of the bacterial nucleoid. E. coli has two subunits of HU coded by hupA and hupB genes whereas Mycobacterium tuberculosis (Mtb) has only one subunit of HU coded by ORF Rv2986c (hupB gene). One noticeable feature regarding Mtb HupB, based on sequence alignment of HU orthologs from different bacteria, was that HupB(Mtb) bears at its C-terminal end, a highly basic extension and this prompted an examination of its role in Mtb HupB function. METHODOLOGY/PRINCIPAL FINDINGS: With this objective two clones of Mtb HupB were generated; one expressing full length HupB protein (HupB(Mtb)) and another which expresses only the N terminal region (first 95 amino acid) of hupB (HupB(MtbN)). Gel retardation assays revealed that HupB(MtbN) is almost like E. coli HU (heat stable nucleoid protein) in terms of its DNA binding, with a binding constant (K(d)) for linear dsDNA greater than 1000 nM, a value comparable to that obtained for the HUalphaalpha and HUalphabeta forms. However CTR (C-terminal Region) of HupB(Mtb) imparts greater specificity in DNA binding. HupB(Mtb) protein binds more strongly to supercoiled plasmid DNA than to linear DNA, also this binding is very stable as it provides DNase I protection even up to 5 minutes. Similar results were obtained when the abilities of both proteins to mediate protection against DNA strand cleavage by hydroxyl radicals generated by the Fenton's reaction, were compared. It was also observed that both the proteins have DNA binding preference for A:T rich DNA which may occur at the regulatory regions of ORFs and the oriC region of Mtb. CONCLUSIONS/SIGNIFICANCE: These data thus point that HupB(Mtb) may participate in chromosome organization in-vivo, it may also play a passive, possibly an architectural role
    corecore