1,804 research outputs found
Walker-like domain wall breakdown in layered antiferromagnets driven by staggered spin–orbit fields
Funder: STSM grant: COST Action CA17123AbstractWithin linear continuum theory, no magnetic texture can propagate faster than the maximum group velocity of the spin waves. Here, by atomistic spin dynamics simulations and supported by analytical theory, we report that a strongly non-linear transient regime due to the appearance of additional magnetic textures results in the breaking of the Lorentz translational invariance. This dynamical regime is akin to domain wall Walker-breakdown in ferromagnets and involves the nucleation of an antiferromagnetic domain wall pair. While one of the nucleated domain walls is accelerated beyond the magnonic limit, the remaining pair remains static. Under large spin–orbit fields, a cascade of multiple generation and recombination of domain walls are obtained. This result may clarify recent experiments on current pulse induced shattering of large domain structures into small fragmented domains and the subsequent slow recreation of large-scale domains.</jats:p
The evolution and distribution of phage ST160 within Salmonella enterica serotype Typhimurium
Salmonellosis is an internationally important disease of mammals and birds. Unique epidemics in New Zealand in the recent past include two Salmonella serovars: Salmonella enterica subsp. enterica serovar Typhimurium definitive type (DT) 160 (S. Typhimurium DT160) and S. Brandenburg. Although not a major threat internationally, in New Zealand S. Typhimurium DT160 has been the most common serovar isolated from humans, and continues to cause significant losses in wildlife. We have identified DNA differences between the first New Zealand isolate of S. Typhimurium DT160 and the genome-sequenced strain, S. Typhimurium LT2. All the differences could be accounted for in one cryptic phage ST64B, and one novel P22-like phage, ST160. The majority of the ST160 genome is almost identical to phage SE1 but has two regions not found in SE1 which are identical to the P22-like phage ST64T, suggesting that ST160 evolved from SE1 via two recombination events with ST64T. All of the New Zealand isolates of DT160 were identical indicating the clonal spread of this particular Salmonella. Some overseas isolates of S. Typhimurium DT160 differed from the New Zealand strain and contained SE1 phage rather than ST160. ST160 was also identified in New Zealand isolates of S. Typhimurium DT74 and S. Typhimurium RDNC-April06 and in S. Typhimurium DT160 isolates from the USA. The emergence of S. Typhimurium DT160 as a significant pathogen in New Zealand is postulated to have occurred due to the sensitivity of the Salmonella strains to the ST160 phage when S. Typhimurium DT160 first arrived. © 2010 Cambridge University Press
Giant localised spin-Peltier effect due to ultrafast domain wall motion in antiferromagnetic metals
AbstractSpin thermo-electric phenomena have attracted wide attention recently, e.g., the spin Peltier effect—heat generation by magnonic spin currents. Here, we find that the spin Peltier effect also manifests as a heat wave accompanying fast moving magnetic textures. High speed and extreme magnetic excitation localisation are paramount for efficient transfer of energy from the spin-degrees of freedom to electrons and lattice. While satisfying both conditions is subject to severe restrictions in ferromagnets, we find that domain walls in antiferromagnets can overcome these limitations due to their ultrahigh mobility and ultra-small widths originating from the relativistic contraction. To illustrate our findings, we show that electric current driven domain wall motion in the antiferromagnetic metal Mn2Au can carry a localised heat wave with temperature up to 1 K. Since domain walls are localised magnetic objects, this effect has the potential for nanoscale heating sensing and functionalities.</jats:p
Recommended from our members
Giant localised spin-Peltier effect due to ultrafast domain wall motion in antiferromagnetic metals
AbstractSpin thermo-electric phenomena have attracted wide attention recently, e.g., the spin Peltier effect—heat generation by magnonic spin currents. Here, we find that the spin Peltier effect also manifests as a heat wave accompanying fast moving magnetic textures. High speed and extreme magnetic excitation localisation are paramount for efficient transfer of energy from the spin-degrees of freedom to electrons and lattice. While satisfying both conditions is subject to severe restrictions in ferromagnets, we find that domain walls in antiferromagnets can overcome these limitations due to their ultrahigh mobility and ultra-small widths originating from the relativistic contraction. To illustrate our findings, we show that electric current driven domain wall motion in the antiferromagnetic metal Mn2Au can carry a localised heat wave with temperature up to 1 K. Since domain walls are localised magnetic objects, this effect has the potential for nanoscale heating sensing and functionalities.</jats:p
Automated cell tracking using StarDist and TrackMate [version 1; peer review: awaiting peer review]
The ability of cells to migrate is a fundamental physiological process involved in embryonic development, tissue homeostasis, immune surveillance, and wound healing. Therefore, the mechanisms governing cellular locomotion have been under intense scrutiny over the last 50 years. One of the main tools of this scrutiny is live-cell quantitative imaging, where researchers image cells over time to study their migration and quantitatively analyze their dynamics by tracking them using the recorded images. Despite the availability of computational tools, manual tracking remains widely used among researchers due to the difficulty setting up robust automated cell tracking and large-scale analysis. Here we provide a detailed analysis pipeline illustrating how the deep learning network StarDist can be combined with the popular tracking software TrackMate to perform 2D automated cell tracking and provide fully quantitative readouts. Our proposed protocol is compatible with both fluorescent and widefield images. It only requires freely available and open-source software (ZeroCostDL4Mic and Fiji), and does not require any coding knowledge from the users, making it a versatile and powerful tool for the field. We demonstrate this pipeline's usability by automatically tracking cancer cells and T cells using fluorescent and brightfield images. Importantly, we provide, as supplementary information, a detailed step-by-step protocol to allow researchers to implement it with their images
Hydrotropism: analysis of the root response to a moisture gradient
Hydrotropism is a genuine response of roots to a moisture gradient to avoid drought. An experimental system for the induction of hydrotropic root response in petri dishes was designed by pioneering groups in the field. This system uses split agar plates containing an osmolyte only in a region of the plate in order to generate a water potential gradient. Arabidopsis seedlings are placed on the MS agar plate so that their root tips are near the junction between plain MS medium and the region supplemented with the osmolyte. This elicits a hydrotropic response in Arabidopsis roots that can be measured as the root curvature angle
MHC immunoevasins: protecting the pathogen reservoir in infection
Alteration of antigen recognition by T cells as result of insufficient major histocompatibility complex (MHC)-dependent antigen-presenting function has been observed in many cases of infections, particularly in in vitro systems. To hide themselves from an efficient immune response, pathogens may act on MHC-related functions at three levels: (i) by limiting the number of potential antigens that can be presented to naive T cells; (ii) by synthesizing proteins which directly affect MHC cell-surface expression; and (iii) by altering the normal intracellular pathway of peptide loading on MHC. Here, we review examples of pathogens' action on each single step of MHC function and we suggest that the result of these often synergistic actions is both a limitation of the priming of naive T cells and, more importantly, a protection of the pathogen's reservoir from the attack of primed T cells. The above mechanisms may also generate a skewing effect on immune effector mechanisms, which helps preserving the reservoir of infection from sterilization by the immune system
Does oral sodium bicarbonate therapy improve function and quality of life in older patients with chronic kidney disease and low-grade acidosis (the BiCARB trial)? Study protocol for a randomized controlled trial
Date of acceptance: 01/07/2015 © 2015 Witham et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Acknowledgements UK NIHR HTA grant 10/71/01. We acknowledge the financial support of NHS Research Scotland in conducting this trial.Peer reviewedPublisher PD
Automated cell tracking using StarDist and TrackMate
The ability of cells to migrate is a fundamental physiological process involved in embryonic development, tissue homeostasis, immune surveillance, and wound healing. Therefore, the mechanisms governing cellular locomotion have been under intense scrutiny over the last 50 years. One of the main tools of this scrutiny is live-cell quantitative imaging, where researchers image cells over time to study their migration and quantitatively analyze their dynamics by tracking them using the recorded images. Despite the availability of computational tools, manual tracking remains widely used among researchers due to the difficulty setting up robust automated cell tracking and large-scale analysis. Here we provide a detailed analysis pipeline illustrating how the deep learning network StarDist can be combined with the popular tracking software TrackMate to perform 2D automated cell tracking and provide fully quantitative readouts. Our proposed protocol is compatible with both fluorescent and widefield images. It only requires freely available and open-source software (ZeroCostDL4Mic and Fiji), and does not require any coding knowledge from the users, making it a versatile and powerful tool for the field. We demonstrate this pipeline's usability by automatically tracking cancer cells and T cells using fluorescent and brightfield images. Importantly, we provide, as supplementary information, a detailed step-by-step protocol to allow researchers to implement it with their images. </div
Implementation of the CALM intervention for anxiety disorders: a qualitative study
<p>Abstract</p> <p>Background</p> <p>Investigators recently tested the effectiveness of a collaborative-care intervention for anxiety disorders: Coordinated Anxiety Learning and Management(CALM) []) in 17 primary care clinics around the United States. Investigators also conducted a qualitative process evaluation. Key research questions were as follows: (1) What were the facilitators/barriers to implementing CALM? (2) What were the facilitators/barriers to sustaining CALM after the study was completed?</p> <p>Methods</p> <p>Key informant interviews were conducted with 47 clinic staff members (18 primary care providers, 13 nurses, 8 clinic administrators, and 8 clinic staff) and 14 study-trained anxiety clinical specialists (ACSs) who coordinated the collaborative care and provided cognitive behavioral therapy. The interviews were semistructured and conducted by phone. Data were content analyzed with line-by-line analyses leading to the development and refinement of themes.</p> <p>Results</p> <p>Similar themes emerged across stakeholders. Important facilitators to implementation included the perception of "low burden" to implement, provider satisfaction with the intervention, and frequent provider interaction with ACSs. Barriers to implementation included variable provider interest in mental health, high rates of part-time providers in clinics, and high social stressors of lower socioeconomic-status patients interfering with adherence. Key sustainability facilitators were if a clinic had already incorporated collaborative care for another disorder and presence of onsite mental health staff. The main barrier to sustainability was funding for the ACS.</p> <p>Conclusions</p> <p>The CALM intervention was relatively easy to incorporate during the effectiveness trial, and satisfaction was generally high. Numerous implementation and sustainability barriers could limit the reach and impact of widespread adoption. Findings should be interpreted with the knowledge that the ACSs in this study were provided and trained by the study. Future research should explore uptake of CALM and similar interventions without the aid of an effectiveness trial.</p
- …