59 research outputs found

    Microvesicles released from Giardia intestinalis disturb host-pathogen response in vitro

    Get PDF
    This document is the Accepted Manuscript version of a published work that appeared in final form in European Journal of Cell Biology, after peer review and technical editing by the publisher. To access the final edited and published work see: https://doi.org/10.1016/j.ejcb.2017.01.005.Giardia intestinalis (G.I), is an anaerobic protozoan and the aetiological agent of giardiasis, a diarrhoea present worldwide and associated with poverty. G.I has a simple life cycle alternating between cyst and trophozoite. Cysts are transmitted orally to the stomach and transform to trophozoites in the intestine by a multifactorial process. Recently, microvesicles (MVs) have been found to be released from a wide range of eukaryotic cells. We have observed a release of MVs during the life cycle of G.I., identifying MVs from active trophozoites and from trophozoites differentiating to the cyst form. The aim of the current work was to investigate the role of MVs from G.I in the pathogenesis of giardiasis. MVs from log phase were able to increase the attachment of G. intestinalis trophozoites to Caco-2 cells. Moreover, MVs from G. intestinalis could be captured by human immature dendritic cells, resulting in increased activation and allostimulation of human dendritic cells. Lipid rafts participate in the MV biogenesis and in the attachment to Caco-2 cells. Nevertheless, proteomic analysis from two types of MVs has shown slight differences at the protein levels. An understanding of biogenesis and content of MVs derived from trophozoites might have important implications in the pathogenesis of the disease.Peer reviewe

    Genome-wide regulation of innate immunity by juvenile hormone and 20-hydroxyecdysone in the Bombyx fat body

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Insect innate immunity can be affected by juvenile hormone (JH) and 20-hydroxyecdysone (20E), but how innate immunity is developmentally regulated by these two hormones in insects has not yet been elucidated. In the silkworm, <it>Bombyx mori</it>, JH and 20E levels are high during the final larval molt (4 M) but absent during the feeding stage of 5<sup>th </sup>instar (5 F), while JH level is low and 20E level is high during the prepupal stage (PP). Fat body produces humoral response molecules and hence is considered as the major organ involved in innate immunity.</p> <p>Results</p> <p>A genome-wide microarray analysis of <it>Bombyx </it>fat body isolated from 4 M, 5 F and PP uncovered a large number of differentially-expressed genes. Most notably, 6 antimicrobial peptide (AMP) genes were up-regulated at 4 M versus PP suggesting that <it>Bombyx </it>innate immunity is developmentally regulated by the two hormones. First, JH treatment dramatically increased AMP mRNA levels and activities. Furthermore, 20E treatment exhibited inhibitory effects on AMP mRNA levels and activities, and RNA interference of the 20E receptor <it>EcR</it>-<it>USP </it>had the opposite effects to 20E treatment.</p> <p>Conclusion</p> <p>Taken together, we demonstrate that JH acts as an immune-activator while 20E inhibits innate immunity in the fat body during <it>Bombyx </it>postembryonic development.</p

    The Functions of Grainy Head-Like Proteins in Animals and Fungi and the Evolution of Apical Extracellular Barriers

    Get PDF
    The Grainy head (GRH) family of transcription factors are crucial for the development and repair of epidermal barriers in all animals in which they have been studied. This is a high-level functional conservation, as the known structural and enzymatic genes regulated by GRH proteins differ between species depending on the type of epidermal barrier being formed. Interestingly, members of the CP2 superfamily of transcription factors, which encompasses the GRH and LSF families in animals, are also found in fungi – organisms that lack epidermal tissues. To shed light on CP2 protein function in fungi, we characterized a Neurospora crassa mutant lacking the CP2 member we refer to as grainy head-like (grhl). We show that Neurospora GRHL has a DNA-binding specificity similar to that of animal GRH proteins and dissimilar to that of animal LSF proteins. Neurospora grhl mutants are defective in conidial-spore dispersal due to an inability to remodel the cell wall, and we show that grhl mutants and the long-known conidial separation-2 (csp-2) mutants are allelic. We then characterized the transcriptomes of both Neurospora grhl mutants and Drosophila grh mutant embryos to look for similarities in the affected genes. Neurospora grhl appears to play a role in the development and remodeling of the cell wall, as well as in the activation of genes involved in defense and virulence. Drosophila GRH is required to activate the expression of many genes involved in cuticular/epidermal-barrier formation. We also present evidence that GRH plays a role in adult antimicrobial defense. These results, along with previous studies of animal GRH proteins, suggest the fascinating possibility that the apical extracellular barriers of some animals and fungi might share an evolutionary connection, and that the formation of physical barriers in the last common ancestor was under the control of a transcriptional code that included GRH-like proteins

    Functional imaging of a model unicell: Spironucleus vortens as an anaerobic but aerotolerant flagellated protist

    Get PDF
    Advances in optical microscopy are continually narrowing the chasm in our appreciation of biological organization between the molecular and cellular levels, but many practical problems are still limiting. Observation is always limited by the rapid dynamics of ultrastructural modifications of intracellular components, and often by cell motility: imaging of the unicellular protist parasite of ornamental fish, Spironucleus vortens, has proved challenging. Autofluorescence of nicotinamide nucleotides and flavins in the 400–580 nm region of the visible spectrum, is the most useful indicator of cellular redox state and hence vitality. Fluorophores emitting in the red or near-infrared (i.e., phosphors) are less damaging and more penetrative than many routinely employed fluors. Mountants containing free radical scavengers minimize fluorophore photobleaching. Two-photon excitation provides a small focal spot, increased penetration, minimizes photon scattering and enables extended observations. Use of quantum dots clarifies the competition between endosomal uptake and exosomal extrusion. Rapid motility (161 ÎŒm/s) of the organism makes high resolution of ultrastructure difficult even at high scan speeds. Use of voltage-sensitive dyes determining transmembrane potentials of plasma membrane and hydrogenosomes (modified mitochondria) is also hindered by intracellular motion and controlled anesthesia perturbs membrane organization. Specificity of luminophore binding is always questionable; e.g. cationic lipophilic species widely used to measure membrane potentials also enter membrane-bounded neutral lipid droplet-filled organelles. This appears to be the case in S. vortens, where Coherent Anti-Stokes Raman Scattering (CARS) micro-spectroscopy unequivocally images the latter and simultaneous provides spectral identification at 2840 cm−1. Secondary Harmonic Generation highlights the highly ordered structure of the flagella

    Innate Immunity in Insects, Function and Regulation of Hemolin from Hyalophora cecropia

    No full text
    Insects are useful models for the study of innate immune reactions and development. The distinction between recognition mechanisms preceding the breakdown of apoptotic cells during metamorphosis, and the breakdown of cells in response to infections, is unclear. Hemolin, a Lepidopteran member of the immunoglobulin superfamily, is a candidate molecule in self/nonself recognition. This thesis investigates hemolin function and hemolin gene regulation at a molecular level. We investigated the binding and cell adhesion properties of hemolin from H. cecropia and demonstrated that the proteins could homodimerize in presence of calcium. Moreover, a higher molecular weight membrane form of hemolin was present on hemocytes. These results, taken together with an earlier finding that soluble hemolin inhibits hemocyte adhesion, indicated that the secreted hemolin could modulate hemocyte aggregation in a competitive manner in the blood. In addition, hemolin was expressed in different tissues and at different developmental stages. Since hemolin is expressed both during development and during the immune response, its different regulatory factors must act in concert. We found that the third intron contains an enhancer, through which Dif, C/EBP and HMGI synergistically activate a reporter construct in vitro. We concluded that the enhancer is used during infection, since the ÎșB-site is crucial for an immune response. Interestingly, we also found that the active form of the steroid hormone, ecdysone, induces the hemolin gene transcription in vivo, and in addition, acts synergistically during bacterial infection. Preliminary in vivo results indicate a secondary effect of ecdysone and the importance of hormone receptor elements in the upstream promoter region of hemolin. To explore the use of Drosophila as a genetic tool for understanding hemolin function and regulation, we sought to isolate the functional homologue in this species. A fly cDNA library in yeast was screened using H. cecropia hemolin as bait. The screen was not successful. However, it did lead to the discovery of a Drosophila protein with true binding specificity for hemolin. Subsequent characterization revealed a new, highly conserved gene, which we named yippee. Yippee is distantly related to zinc finger proteins and represents a novel family of proteins present in numerous eukaryotes, including fungi, plants and humans. Notably, when the Drosophila genome sequence was revealed, no hemolin orthologue could be detected. Finally, an extensive Drosophila genome chip analysis was initiated. The goal was to investigate the Drosophila immune response, and, in contrast to earlier studies of artificially injected flies, to examine a set of natural microbes, orally and externally applied. In parallel experiments viruses, bacteria, fungi and parasites were compared to unchallenged controls. We obtained a unique set of genes that were up-regulated in the response to the parasite Octosporea muscadomesticae and to the fungus Beauveria bassiana. We expect both down-regulated and up-regulated genes to serve as a source for the discovery of new effector molecules, in particular those that are active against parasites and fungi

    Möjligheter och hinder med att integrera kemi med andra Àmnen pÄ gymnasiet, ett lÀrarperspektiv

    No full text
    Flera elevundersökningar pĂ„visar ett minskat intresse för naturvetenskap. Ämnet kemi upplevs som abstrakt och antalet sökande till fortsatta studier i kemi avtar. Detta Ă€r en oroande trend dĂ„ mycket i samhĂ€llet idag har sin grund inom naturvetenskapen och kemin. Individen behöver naturvetenskaplig kunskap för att kunna deltaga i ett demokratiskt samhĂ€lle, sĂ„vĂ€l lokalt som globalt. Vidare Ă€r samhĂ€llet i behov av en naturvetenskaplig yrkeskĂ„r. För att underlĂ€tta elevers lĂ€rande framhĂ„ller nuvarande Ă€mnesdidaktisk forskning vikten av en verklighetsanknutet undervisningen samt att en helhetsbild skapas för eleverna. Med mĂ„l att frĂ€mja verklighetsanknytning och helhetsförstĂ„else har vi i detta arbete undersökt möjligheten att integrera Kemi A med de gemensamma kurserna pĂ„ det naturvetenskapliga programmet utifrĂ„n gymnasieskolans kursmĂ„l. VĂ„ra förslag pĂ„ de Ă€mnesintegrerade momenten har dĂ€refter, genom kvalitativa intervjuer, utvĂ€rderats av fyra lĂ€rare vars Ă€mnesbehörighet tĂ€cker de i momenten ingĂ„ende Ă€mnena. Vi visar att det finns tydliga beröringspunkter i kursmĂ„len för Kemi A med de övriga naturvetenskapliga Ă€mnena, men Ă€ven med Ă€mnen inom övriga discipliner. De flesta intervjuade lĂ€rare ser en vinst för det egna Ă€mnet med de förslagna Ă€mnesintegreringarna. De hinder som klarlades under intervjuerna var av praktisk karaktĂ€r dĂ€r faktorer som tid och schema ansĂ„gs vara begrĂ€nsande. Vidare tror de att för att öka intresset för kemi och naturvetenskap sĂ„ behöver undervisningen kopplas till verkligheten. För att bemöta ett sviktande intresse hos elever samt för att underlĂ€tta elevers lĂ€rande anser vi att undervisningen i kemi behöver förĂ€ndras. Med detta arbete vill vi lyfta fram Ă€mnesintegrering som en lĂ€mplig förĂ€ndring. De presenterade Ă€mnesövergripande momenten visar pĂ„ möjligheter till en helhetsgivande undervisning och Ă€r tĂ€nkt till att inspirera verksamma gymnasielĂ€rare samt underlĂ€tta lĂ€rarens dubbla uppdrag att bedriva en undervisning som frĂ€mjar Ă€mneskunskaper och elevens vĂ€rdegrund

    Giardia lamblia-Induced Changes in Gene Expression in Differentiated Caco-2 Human Intestinal Epithelial Cells

    No full text
    The parasitic protozoan Giardia lamblia is a worldwide cause of diarrhea, but the mechanism of disease remains elusive. The parasite colonizes the small intestinal epithelium, known to be a sensor for the presence of enteric pathogens, without invading or causing severe inflammation. In this study we investigated the epithelial cell response to G. lamblia. Differentiated Caco-2 cells were infected with G. lamblia isolate WB-A11, and the transcriptome of the intestinal cells was analyzed after 1.5, 6, and 18 h of interaction, using oligonucleotide microarrays. A large number of genes displayed changed expression patterns, showing the complexity of the interaction between G. lamblia and intestinal cells. A novel chemokine profile (CCL2, CCL20, CXCL1, CXCL2, and CXCL3) was induced that was different from the response induced by enteric pathogens causing intestinal inflammation. Several genes involved in stress regulation changed their expression. These findings indicate that the intestinal epithelium senses the G. lamblia infection, and this is important for induction of innate and adaptive immunity. The induced stress response can be important in the pathogenesis

    Giardiasis

    No full text
    • 

    corecore