388 research outputs found

    Design and performance of feedhorn-coupled bolometer arrays for SPIRE

    Get PDF
    This paper reviews the design, modeling, and testing of feedhorn arrays coupled to bolometric detector arrays being developed for the ESA Herschel Space Observatory's SPIRE instrument. SPIRE will incorporate five arrays of silicon nitride micromesh bolometers, in three broadband photometers and two Fourier-Transform spectrometers covering 200-700 μm, with a total of 326 feedhorn-coupled bolometers. The precision feedhorn arrays are formed by close-packing individually fabricated conical feedhorns, which terminate in waveguides and integrating cavities. The detector array is efficiently packaged by mounting it between a metallized silicon backshort array and the feedhorn array, which encloses the bolometers in precisely tuned integrating cavities. The absorption efficiency, bandwidth, and cross talk were first investigated with numerical simulations of the electromagnetic fields, and then measured for prototype arrays in a test facility. This discussion describes the design goals, simulations, fabrication, and measurements of optical efficiencies, spectral properties, beam shapes, and cross talk between bolometers

    Turbulent viscosity in clumpy accretion disks II supernova driven turbulence in the Galaxy

    Full text link
    An analytical model for a turbulent clumpy gas disk is presented where turbulence is maintained by the energy input due to supernovae. Expressions for the disk parameters, global filling factors, molecular fractions, and star formation rates are given as functions of the Toomre parameter QQ, the ratio between the cloud size and the turbulent driving length scale δ\delta, the mass accretion rate within the disk M˙\dot{M}, the constant of molecule formation α\alpha, the disk radius, the angular velocity, and its radial derivative. Two different cases are investigated: a dominating stellar disk and a self-gravitating gas disk in zz direction. The turbulent driving wavelength is determined in a first approach by energy flux conservation, i.e. the supernovae energy input is transported by turbulence to smaller scales where it is dissipated. The results are compared to those of a fully gravitational model. For Q=1 and δ=1\delta=1 both models are consistent with each other. In a second approach the driving length scale is directly determined by the size of supernovae remnants. Both models are applied to the Galaxy and can reproduce its integrated and local gas properties. The influence of thermal and magnetic pressure on the disk structure is investigated. We infer Q1Q \sim 1 and M˙0.050.1Myr1\dot{M} \sim 0.05 - 0.1 M_{\odot} yr ^{-1} for the Galaxy.Comment: 15 pages with 10 figures. Accepted for publication in A&

    The dark matter halo shape of edge-on disk galaxies - II. Modelling the HI observations: methods

    Get PDF
    This is the second paper of a series in which we attempt to put constraints on the flattening of dark halos in disk galaxies. For this purpose, we observe the HI in edge-on galaxies, where it is in principle possible to measure the force field in the halo vertically and radially from gas layer flaring and rotation curve decomposition respectively. To calculate the force fields, we need to analyse the observed XV diagrams to accurately measure all three functions that describe the planar kinematics and distribution of a galaxy: the radial HI surface density, the rotation curve and the HI velocity dispersion. In this paper, we discuss the improvements and limitations of the methods previously used to measure these HI properties. We extend the constant velocity dispersion method to include determination of the HI velocity dispersion as a function of galactocentric radius and perform extensive tests on the quality of the fits. We will apply this 'radial decomposition XV modelling method' to our HI observations of 8 HI-rich, late-type, edge-on galaxies in the third paper of this series.Comment: Accepted for publication by Astronomy & Astrophysics. For a higher resolution version see http://www.astro.rug.nl/~vdkruit/jea3/homepage/12566.pd

    The star-forming content of the W3 giant molecular cloud

    Full text link
    We have surveyed a ~0.9-square-degree area of the W3 giant molecular cloud and star-forming region in the 850-micron continuum, using the SCUBA bolometer array on the James Clerk Maxwell Telescope. A complete sample of 316 dense clumps was detected with a mass range from around 13 to 2500 Msun. Part of the W3 GMC is subject to an interaction with the HII region and fast stellar winds generated by the nearby W4 OB association. We find that the fraction of total gas mass in dense, 850-micron traced structures is significantly altered by this interaction, being around 5% to 13% in the undisturbed cloud but ~25 - 37% in the feedback-affected region. The mass distribution in the detected clump sample depends somewhat on assumptions of dust temperature and is not a simple, single power law but contains significant structure at intermediate masses. This structure is likely to be due to crowding of sources near or below the spatial resolution of the observations. There is little evidence of any difference between the index of the high-mass end of the clump mass function in the compressed region and in the unaffected cloud. The consequences of these results are discussed in terms of current models of triggered star formation.Comment: 13 pages, 8 figures, 1 table (full source table available on request). Accepted for publication in Monthly Notices of the Royal Astronomical Society (Main Journal

    Bolocam: a millimeter-wave bolometric camera

    Get PDF
    We describe the design of Bolocam, a bolometric camera for millimeter-wave observations at the Caltech Submillimeter Observatory. Bolocam will have 144 diffraction-limited detectors operating at 300 mK, an 8 arcminute field of view, and a sky noise limited NEFD of approximately 35 mJy Hz^(-1/2) per pixel at λ = 1.4 mm. Observations will be possible at one of (lambda) equals 1.1., 1.4, or 2.1 mm per observing run. The detector array consists of sensitive NTD Ge thermistors bonded to silicon nitride micromesh absorbers patterned on a single wafer of silicon. This is a new technology in millimeter-wave detector array construction. To increase detector packing density, the feed horns will be spaced by 1.26 fλ (at λ = 1.4 mm), rather than the conventional 2fλ . DC stable read out electronics will enable on-the-fly mapping and drift scanning. We will use Bolocam to map Galactic dust emission, to search for protogalaxies, and to observe the Sunyaev- Zel'dovich effect toward galaxy clusters

    Oxygen and nitrogen abundances in Virgo and field spirals

    Get PDF
    The oxygen and nitrogen abundances in the HII regions of the nine Virgo spirals of the sample from Skillman et al (1996) and in nine field spiral galaxies are re-determined with the recently suggested P - method. We confirm that there is an abundance segregation in the sample of Virgo spirals in the sense that the HI deficient Virgo spirals near the core of the cluster have higher oxygen abundances in comparison to the spirals at the periphery of the Virgo cluster. At the same time both the Virgo periphery and core spirals have counterparts among field spirals. We conclude that if there is a difference in the abundance properties of the Virgo and field spirals, this difference appears to be small and masked by the observational errors.Comment: 16 pages, 10 figures, accepted for publication in Astronomy and Astrophysic

    Molecular Gas in Spiral Galaxies

    Full text link
    In this review, I highlight a number of recent surveys of molecular gas in nearby spiral galaxies. Through such surveys, more complete observations of the distribution and kinematics of molecular gas have become available for galaxies with a wider range of properties (e.g., brightness, Hubble type, strength of spiral or bar structure). These studies show the promise of both interferometers and single-dish telescopes in advancing our general understanding of molecular gas in spiral galaxies. In particular, I highlight the contributions of the recent BIMA Survey of Nearby Galaxies (SONG).Comment: 8 pages, 1 figure. To appear in the proceedings of the 4th Cologne-Bonn-Zermatt-Symposium, "The Dense Interstellar Medium in Galaxies", which was held in Zermatt, Switzerland in September 200

    Molecular gas in NGC6946

    Get PDF
    We present imaging of molecular gas emission in the star-forming spiral galaxy NGC6946. Our CO(1-0) and CO(3-2) images, made at 22" resolution with the IRAM 30-m and the Heinrich Hertz 10-m radio telescopes, are the most extensive CO observations of this galaxy and are among the most extensive observations of molecular gas in any spiral galaxy. The molecular component in NGC6946 is unusually massive, with a ratio of molecular to atomic Hydrogen of 0.57. A star formation efficiency image for NGC6946 ranges by over two orders of magnitude with highest values found in the northeastern spiral arm, and anticorrelates with the 6cm polarized emission image, which traces the regular part of the magnetic field. We analyse the ISM in NGC6946's disk by making 1-D and 2-D comparisons of images made in several wavebands. A point-by-point correlation technique finds that the molecular gas is closely associated with the 7micron-emitting dust. The high correlation found between the MIR emission and the radio continuum at 6cm cannot be due to dust heating and gas ionization in star-forming regions because the thermal radio emission is less correlated with the MIR than the nonthermal emission. A coupling of magnetic fields to gas clouds is proposed as a possible scenario.Comment: A&A accepted, 23 pages, 11 figures. Version with high resolution figures available at: http://cfa-www.harvard.edu/~wwalsh/sp.htm

    Near-infrared line imaging of the starburst galaxies NGC 520, NGC 1614 and NGC 7714

    Get PDF
    We present high spatial resolution (0.6 arcsec) near-infrared broad-band JHK images and Br_gamma 2.1661 micron and H_2 1-0 S(1) 2.122 micron emission line images of the nuclear regions in the interacting starburst galaxies NGC 520, NGC 1614 and NGC 7714. The near-infrared emission line and radio morphologies are in general agreement, although there are differences in details. In NGC 1614, we detect a nuclear double structure in Br_gamma, in agreement with the radio double structure. We derive average extinctions of A(K) = 0.41 and A(K) = 0.18 toward the nuclear regions of NGC 1614 and NGC 7714, respectively. For NGC 520, the extinction is much higher, A(K) = 1.2 - 1.6. The observed H_2/Br_gamma ratios indicate that the main excitation mechanism of the molecular gas is fluorescence by intense UV radiation from clusters of hot young stars, while shock excitation can be ruled out. The starburst regions in all galaxies exhibit small Br_gamma equivalent widths. Assuming a constant star formation model, even with a lowered upper mass cutoff of M_u = 30 M_o, results in rather old ages (10 - 40 Myr), in disagreement with the clumpy near-infrared morphologies. We prefer a model of an instantaneous burst of star formation with M_u = 100 M_o, occurring 6 - 7 Myr ago, in agreement with previous determinations and with the detection of W-R features in NGC 1614 and NGC 7714. Finally, we note a possible systematic difference in the amount of hot molecular gas between starburst and Seyfert galaxies.Comment: 13 pages, A&A, accepte
    corecore