618 research outputs found

    John Tuzo Wilson (1908-1993)

    Get PDF
    With the death of Dr. John Tuzo Wilson on 15 April 1993, Canada lost a renowned scientist, and the North lost one of its most enthusiastic supporters. ... At the outbreak of the Second World War, Jock joined the Canadian Army, proceeding overseas with the First Canadian Division in January 1940. He was recalled to Canada in 1943 to become the first director of Operational Research at National Defence Headquarters. Recognizing that Canada should play a leading role in the development of winter warfare, he organized a series of northern exercises. It was owing to his foresight and initiative that at the end of the war the Department of National Defence undertook Exercise Musk-Ox, which he directed. This major operation involved a journey in the winter and early spring of 1946 of more than 5000 kilometres through the Arctic and Subarctic by ten army oversnow vehicles, supported by RCAF aircraft. It was designed to test equipment and techniques developed during the war, particularly in relation to the part they might play in the civil evolution of the Canadian North. The success of this operation, which owed so much to his enthusiasm and able direction, had a far-reaching influence, both directly and indirectly, on the changes that have occurred in the Canadian North over the past half century. ... Towards the end of the war Jock was one of a small group of Canadian and U.S. scientists who, recognizing the need for international cooperation in arctic science, founded the Arctic Institute of North America. He was the first chairman of its Board of Governors, and the first article in Arctic is under his name .... Jock's guidance was often sought and valued by both national and international bodies, and it was readily given at all times. ... [The number of honours and awards he received for his achievements are numerous.

    Arctic and Antarctic- A Modern Geographical Synthesis, by David Sugden

    Get PDF

    An Unusual Archaeological Specimen from Foxe Basin

    Get PDF
    Note on artifacts collected by Eskimos and said to have come from Pingerqalik on the east coast of Melville Peninsula south of Igloolik Island; mainly Thule type, with a small number of Dorset type and one artifact showing characteristics of both types

    ZraP is a periplasmic molecular chaperone and a repressor of the zinc-responsive two-component regulator ZraSR

    Get PDF
    The bacterial envelope is the interface with the surrounding environment and is consequently subjected to a barrage of noxious agents including a range of compounds with antimicrobial activity. The ESR (envelope stress response) pathways of enteric bacteria are critical for maintenance of the envelope against these antimicrobial agents. In the present study, we demonstrate that the periplasmic protein ZraP contributes to envelope homoeostasis and assign both chaperone and regulatory function to ZraP from Salmonella Typhimurium. The ZraP chaperone mechanism is catalytic and independent of ATP; the chaperone activity is dependent on the presence of zinc, which is shown to be responsible for the stabilization of an oligomeric ZraP complex. Furthermore, ZraP can act to repress the two-component regulatory system ZraSR, which itself is responsive to zinc concentrations. Through structural homology, ZraP is a member of the bacterial CpxP family of periplasmic proteins, which also consists of CpxP and Spy. We demonstrate environmental co-expression of the CpxP family and identify an important role for these proteins in Salmonella's defence against the cationic antimicrobial peptide polymyxin B

    MoS2-graphene-CuNi2S4 nanocomposite an efficient electrocatalyst for the hydrogen evolution reaction

    Get PDF
    We present a facile methodology for the synthesis of a novel 2D-MoS2, graphene and CuNi2S4 (MoS2-g-CuNi2S4) nanocomposite that displays highly efficient electrocatalytic activity towards the production of hydrogen. The intrinsic hydrogen evolution reaction (HER) activity of MoS2 nanosheets was significantly enhanced by increasing the affinity of the active edge sites towards HĂŸ adsorption using transition metal (Cu and Ni2) dopants, whilst also increasing the edge sites exposure by anchoring them to a graphene frame- work. Detailed XPS analysis reveals a higher percentage of surface exposed S at 17.04%, of which 48.83% is metal bonded S (sulfide). The resultant MoS2-g-CuNi2S4 nanocomposites are immobilized upon screen-printed electrodes (SPEs) and exhibit a HER onset potential and Tafel slope value of -0.05 V (vs. RHE) and 29.3 mV dec-1, respectively. These values are close to that of the polycrystalline Pt electrode (near zero potential (vs. RHE) and 21.0 mV dec-1, respectively) and enhanced over a bare/unmodified SPE (-0.43 V (vs. RHE) and 149.1 mV dec-1, respectively). Given the efficient, HER activity displayed by the novel MoS2-g-CuNi2S4/SPE electrochemical platform and the comparatively low associated cost of production for this nanocomposite, it has potential to be a cost-effective alternative to Pt within electrolyser technologies

    Assembling defenses against therapy-resistant leukemic stem cells: Bcl6 joins the ranks

    Get PDF
    The resistance of leukemic stem cells in response to targeted therapies such as tyrosine kinase inhibitors (TKIs) relies on the cooperative activity of multiple signaling pathways and molecules, including TGFβ, AKT, and FOXO transcription factors (TFs). B cell lymphoma 6 (BCL6) is a transcriptional repressor whose translocation or mutation is associated with diffuse large BCL. New data now show that BCL6 is critical for the maintenance of leukemias driven by the BCR-ABL translocation (Philadelphia chromosome), suggesting that BCL6 is a novel, targetable member of the complex signaling pathways critical for leukemic stem cell survival

    2D‐Hexagonal Boron Nitride Screen‐Printed Bulk‐Modified Electrochemical Platforms Explored towards Oxygen Reduction Reactions

    Get PDF
    A low‐cost, scalable and reproducible approach for the mass production of screen‐printed electrode (SPE) platforms that have varying percentage mass incorporations of 2D hexagonal boron nitride (2D‐hBN) (2D‐hBN/SPEs) is demonstrated herein. These novel 2D‐hBN/SPEs are explored as a potential metal‐free electrocatalysts towards oxygen reduction reactions (ORRs) within acidic media where their performance is evaluated. A 5% mass incorporation of 2D‐hBN into the SPEs resulted in the most beneficial ORR catalysis, reducing the ORR onset potential by ca. 200 mV in comparison to bare/unmodified SPEs. Furthermore, an increase in the achievable current of 83% is also exhibited upon the utilisation of a 2D‐hBN/SPE in comparison to its unmodified equivalent. The screen‐printed fabrication approach replaces the less‐reproducible and time‐consuming dropcasting technique of 2D‐hBN and provides an alternative approach for the large‐scale manufacture of novel electrode platforms that can be utilised in a variety of application

    The antiproliferative activity of kinase inhibitors in chronic myeloid leukemia cells is mediated by FOXO transcription factors

    Get PDF
    Chronic myeloid leukemia (CML) is initiated and maintained by the tyrosine kinase BCR-ABL which activates a number of signal transduction pathways, including PI3K/AKT signaling and consequently inactivates FOXO transcription factors. ABL-specific tyrosine kinase inhibitors (TKIs) induce minimal apoptosis in CML progenitor cells, yet exert potent antiproliferative effects, through as yet poorly understood mechanisms. Here, we demonstrate that in CD34+ CML cells, FOXO1 and 3a are inactivated and relocalized to the cytoplasm by BCR-ABL activity. TKIs caused a decrease in phosphorylation of FOXOs, leading to their relocalization from cytoplasm (inactive) to nucleus (active), where they modulated the expression of key FOXO target genes, such as Cyclin D1, ATM, CDKN1C, and BCL6 and induced G1 arrest. Activation of FOXO1 and 3a and a decreased expression of their target gene Cyclin D1 were also observed after 6 days of in vivo treatment with dasatinib in a CML transgenic mouse model. The over-expression of FOXO3a in CML cells combined with TKIs to reduce proliferation, with similar results seen for inhibitors of PI3K/AKT/mTOR signaling. While stable expression of an active FOXO3a mutant induced a similar level of quiescence to TKIs alone, shRNA-mediated knockdown of FOXO3a drove CML cells into cell cycle and potentiated TKI-induced apoptosis. These data demonstrate that TKI-induced G1 arrest in CML cells is mediated through inhibition of the PI3K/AKT pathway and reactivation of FOXOs. This enhanced understanding of TKI activity and induced progenitor cell quiescence suggests that new therapeutic strategies for CML should focus on manipulation of this signaling network

    Mass-Producible 2D-MoS2‑Impregnated Screen-Printed Electrodes

    Get PDF
    This document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Applied Materials and Interfaces, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://pubs.acs.org/doi/10.1021/acsami.7b05104Two-dimensional molybdenum disulfide (2D-MoS2) screen-printed electrodes (2D-MoS2-SPEs) have been designed, fabricated, and evaluated toward the electrochemical oxygen reduction reaction (ORR) within acidic aqueous media. A screen-printable ink has been developed that allows for the tailoring of the 2D-MoS2 content/mass used in the fabrication of the 2D-MoS2-SPEs, which critically affects the observed ORR performance. In comparison to the graphite SPEs (G-SPEs), the 2D-MoS2-SPEs are shown to exhibit an electrocatalytic behavior toward the ORR which is found, critically, to be reliant upon the percentage mass incorporation of 2D-MoS2 in the 2D-MoS2-SPEs; a greater percentage mass of 2D-MoS2 incorporated into the 2D-MoS2-SPEs results in a significantly less electronegative ORR onset potential and a greater signal output (current density). Using optimally fabricated 2D-MoS2-SPEs, an ORR onset and a peak current of approximately +0.16 V [vs saturated calomel electrode (SCE)] and −1.62 mA cm–2, respectively, are observed, which exceeds the −0.53 V (vs SCE) and −635 ÎŒA cm–2 performance of unmodified G-SPEs, indicating an electrocatalytic response toward the ORR utilizing the 2D-MoS2-SPEs. An investigation of the underlying electrochemical reaction mechanism of the ORR within acidic aqueous solutions reveals that the reaction proceeds via a direct four-electron process for all of the 2D-MoS2-SPE variants studied herein, where oxygen is electrochemically favorably reduced to water. The fabricated 2D-MoS2-SPEs are found to exhibit no degradation in the observed achievable current over the course of 1000 repeat scans. The production of such inks and the resultant mass-producible 2D-MoS2-SPEs mitigates the need to modify post hoc an electrode via the drop-casting technique that has been previously shown to result in a loss of achievable current over the course of 1000 repeat scans. The 2D-MoS2-SPEs designed, fabricated, and tested herein could have commercial viability as electrocatalytic fuel cell electrodes because of being economical as a result of their scales of economy and inherent tailorability. The technique utilized herein to produce the 2D-MoS2-SPEs could be adapted for the incorporation of different 2D nanomaterials, resulting in SPEs with the inherent advantages identified above
    • 

    corecore