22 research outputs found

    Anatomy of a volcanic eruption undersea

    Get PDF
    In December 2021, an undersea volcano in the southern Pacific Ocean, the Hunga Tonga–Hunga Ha‘apai (hereafter called the Hunga volcano) began erupting. In January 2022 the eruption reached a powerful climax, triggering atmospheric waves that traveled around the globe and a tsunami that swept across the Pacific Ocean (1, 2). An estimated 75% of Earth's volcanoes are underwater, and 20% of all fatalities caused by volcanic eruptions since 1600 CE have been associated with underwater volcanism (3). Yet, explosive underwater eruptions are poorly understood. On page 1085 of this issue, Clare et al. (4) report that volcanic debris from the Hunga eruption traveled under the sea at an unprecedented distance and at record-breaking speed—more than 100 km, at velocities reaching 122 km/hour — and destroyed a vast network of seafloor telecommunication cables. Given that 95% of global communications are carried by seafloor cables, the findings highlight system vulnerabilities to underwater volcanism (5)

    Analogue modelling of pyroclastic density current deposition

    Get PDF
    A series of analogue flume experiments are used to investigate initiation, flow and deposition of static piles of polymict materials, the sorting during transport, and the three dimensional geometry of the resulting deposits. Sequential charges are used to investigate the effects and extent of reworking. The particle heterogeneity is designed to simulate typical PDC make-up, with analogues for juvenile pumice and lithic clasts, as well as the fine-grained pumiceous material which makes up the bulk of the flow. Analogue flume experiments are used to investigate the generation of complex facies variations typical of pyroclastic density current (PDC) deposits. Polymict charges are developed to behave as analogues for the particle size and density contrasts present in PDC (i.e. lithic and juvenile pumice clasts), and investigate the effect of granular sorting during flow on the geometry of deposit architectures. Multiple charges are used to simulate pulses or sequences of separate PDC in order to assess the extent and effects of reworking. 3D visualisation of the resulting deposits reveals stratigraphies analogous to those seen in PDC, including pumice ‘rafting’ or over-passing and inverse grading of pumice, and normal grading of lithics by simple gravitational granular sorting. Reworking between differentially-coloured layers makes several complex shear-derived Kelvin-Helmholtz instability features apparent, from fully developed rotational eddies, to less developed recumbent flame structures. The implications for the formation of these in PDC are assessed, including the potential influences on temperature proxy data, radiogenic dating by included phenocrysts (40Ar/39Ar) or charcoals (14C), calculation of eruptive volumes, sedimentation rates and flow velocity

    Investigation of variable aeration of monodisperse mixtures: implications for pyroclastic density currents

    Get PDF
    © 2018, The Author(s). The high mobility of dense pyroclastic density currents (PDCs) is commonly attributed to high gas pore pressures. However, the influence of spatial and temporal variations in pore pressure within PDCs has yet to be investigated. Theory suggests that variability in the fluidisation and aeration of a current will have a significant control on PDC flow and deposition. In this study, the effect of spatially heterogeneous gas pore pressures in experimental PDCs was investigated. Sustained, unsteady granular currents were released into a flume channel where the injection of gas through the channel base was controlled to create spatial variations in aeration. Maximum current front velocity results from high degrees of aeration proximal to the source, rather than lower sustained aeration along the whole flume channel. However, moderate aeration (i.e. ~ 0.5 minimum static fluidisation velocity (U mf_st )) sustained throughout the propagation length of a current results in greater runout distances than currents which are closer to fluidisation (i.e. 0.9 U mf_st ) near to source, then de-aerating distally. Additionally, although all aerated currents are sensitive to channel base slope angle, the runout distance of those currents where aeration is sustained throughout their lengths increases by up to 54% with an increase of slope from 2° to 4°. Deposit morphologies a primarily controlled by the spatial differences in aeration, where there is a large decrease in aeration the current forms a thick depositional wedge. Sustained gas-aerated granular currents are observed to be spontaneously unsteady, with internal sediment waves travelling at different velocities

    Cohesional behaviours in pyroclastic material and the implications for deposit architecture

    Get PDF
    Pyroclastic density currents (PDCs) are hazardous, multiphase currents of heterogeneous volcanic material and gas. Moisture (as liquid or gas) can enter a PDC through external (e.g., interaction with bodies of water) or internal (e.g., initial eruptive activity style) processes, and the presence of moisture can be recorded within distinct deposit layers. We use analogue experiments to explore the behaviour of pyroclastic material with increasing addition of moisture from 0.00–10.00% wt. Our results show that (1) the cohesivity of pyroclastic material changes with the addition of small amounts of moisture, (2) small increases in moisture content change the material properties from a free-flowing material to a non-flowable material, (3) changes in moisture can affect the formation of gas escape structures and fluidisation profiles in pyroclastic material, (4) gas flow through a deposit can lead to a moisture profile and resulting mechanical heterogeneity within the deposit and (5) where gas escape structure growth is hindered by cohesivity driven by moisture, pressure can increase and release in an explosive fashion. This work highlights how a suite of varied gas escape morphologies can form within pyroclastic deposits resulting from moisture content heterogeneity, explaining variation in gas escape structures as well as providing a potential mechanism for secondary explosions

    Laboratory simulations of fluid-induced seismicity, hydraulic fracture, and fluid flow

    Get PDF
    Fluid-induced seismicity has been observed and recorded for decades. Seismic energy necessarily requires a source, which is frequently related to rock fracture either in compression or tension. In both cases, such fracture may be promoted by crustal fluids. In this paper, we review some of the advances in the field of fluid-induced seismicity, with a particular focus on the use and application of new and innovative laboratory methods to better understand the complex, coupled, processes in shallow sub-surface energy extraction applications. We discuss the current state-of-the-art with specific reference to Thermal-Hydraulic-Coupling in volcanotectonic environments, which has a long history of fluid-driven seismic events linked to deep fluid movement. This ranges from local earthquakes to fluid-driven resonance, known as volcanic tremor. More recently so-called non-volcanic tremor has been identified in a range of scenarios where motion at an interface is primarily driven by fluids rather than significant stress release. Finally, we review rock fracture in the tensile regime which occurs naturally and in the engineered environment for developing fractures for the purpose of resource extraction, such as hydraulic fracturing in unconventional hydrocarbon industry or developing Hot-Dry-Rock geothermal reservoirs

    Experimental study of dense pyroclastic density currents using sustained, gas-fluidized granular flows

    Get PDF
    © 2014, Springer-Verlag Berlin Heidelberg. We present the results of laboratory experiments on the behaviour of sustained, dense granular flows in a horizontal flume, in which high-gas pore pressure was maintained throughout the flow duration by continuous injection of gas through the flume base. The flows were fed by a sustained (0.5–30 s) supply of fine (75 ± 15 μm) particles from a hopper; the falling particles impacted an impingement surface at concentrations of ~3 to 45 %, where they densified rapidly to generate horizontally moving, dense granular flows. When the gas supplied through the flume base was below the minimum fluidization velocity of the particles (i.e. aerated flow conditions), three flow phases were identified: (i) an initial dilute spray of particles travelling at 1–2 m s−1, followed by (ii) a dense granular flow travelling at 0.5–1 m s−1, then by (iii) sustained aggradation of the deposit by a prolonged succession of thin flow pulses. The maximum runout of the phase 2 flow was linearly dependent on the initial mass flux, and the frontal velocity had a square-root dependence on mass flux. The frontal propagation speed during phase 3 had a linear relationship with mass flux. The total mass of particles released had no significant control on either flow velocity or runout in any of the phases. High-frequency flow unsteadiness during phase 3 generated deposit architectures with progradational and retrogradational packages and multiple internal erosive contacts. When the gas supplied through the flume base was equal to the minimum fluidization velocity of the particles (i.e. fluidized flow conditions), the flows remained within phase 2 for their entire runout, no deposit formed and the particles ran off the end of the flume. Sustained granular flows differ significantly from instantaneous flows generated by lock-exchange mechanisms, in that the sustained flows generate (by prolonged progressive aggradation) deposits that are much thicker than the flowing layer of particles at any given moment. The experiments offer a first attempt to investigate the physics of the sustained pyroclastic flows that generate thick, voluminous ignimbrites

    Surface wave observations in 100% Umf fluidised granular current

    No full text
    High speed video frames taken at 500 fps, looking down at the upper surface of a granular flow being supplied with 100% of the minimum fluidisation velocity. Shows development and evolution of surface waves as the current propagates and comes to a halt. Flume base is 15 cm wide. Current is comprised of 45-90 micron soda lime ballotini

    Surface wave observations in 60% Umf fluidised granular current

    No full text
    High speed video frames taken at 500 fps, looking down at the upper surface of a granular flow being supplied with 60% of the minimum fluidisation velocity (Umf). Shows development and evolution of surface waves as the current propagates and comes to a halt. Flume base is 15 cm wide. Current is comprised of 45-90 micron soda lime ballotini
    corecore