190 research outputs found
Protein Supplements for Beef Calves on Winter Range
These trials were to compare the effect of different sources and levels of supplemental protein on the winter and subsequent summer gains of beef calves grazing native range at the Fort Robinson Beef Cattle Research Station, Crawford, Nebraska
The hadal zone is an important and heterogeneous sink of black carbon in the ocean
Black carbon is ubiquitous in the marine environment. However, whether it accumulates in the deepest ocean region, the hadal zone, is unknown. Here we measure the concentration and carbon isotopes (delta C-13 and Delta C-14) of black carbon and total organic carbon in sediments from six hadal trenches. Black carbon constituted 10% of trench total organic carbon, and its delta C-13 and Delta C-14 were more negative than those of total organic carbon, suggesting that the black carbon was predominantly derived from terrestrial C3 plants and fossil fuels. The contribution of fossil carbon to the black carbon pool was spatially heterogeneous, which could be related to differences in the distance to landmass, land cover and socioeconomic development. Globally, we estimate a black carbon burial rate of 1.0 +/- 0.5 Tg yr(-1) in the hadal zone, which is seven-fold higher than the global ocean average per unit area. We propose that the hadal zone is an important, but overlooked, sink of black carbon in the ocean. Black carbon accumulation rates in hadal trenches in the deepest regions of the oceans could be seven-fold higher than the global ocean average, according to geochemical and isotopic analyses of sediments from six trenches in the Pacific Ocean
Deep-Sea Fish Distribution Varies between Seamounts: Results from a Seamount Complex off New Zealand
Fish species data from a complex of seamounts off New Zealand termed the “Graveyard Seamount Complex’ were analysed to investigate whether fish species composition varied between seamounts. Five seamount features were included in the study, with summit depths ranging from 748–891 m and elevation from 189–352 m. Measures of fish species dominance, rarity, richness, diversity, and similarity were examined. A number of factors were explored to explain variation in species composition, including latitude, water temperature, summit depth, depth at base, elevation, area, slope, and fishing effort. Depth at base and slope relationships were significant with shallow seamounts having high total species richness, and seamounts with a more gradual slope had high mean species richness. Species similarity was modelled and showed that the explanatory variables were driven primarily by summit depth, as well as by the intensity of fishing effort and elevation. The study showed that fish assemblages on seamounts can vary over very small spatial scales, in the order of several km. However, patterns of species similarity and abundance were inconsistent across the seamounts examined, and these results add to a growing literature suggesting that faunal communities on seamounts may be populated from a broad regional species pool, yet show considerable variation on individual seamounts
TOI 540 b: A Planet Smaller than Earth Orbiting a Nearby Rapidly Rotating Low-mass Star
We present the discovery of TOI 540 b, a hot planet slightly smaller than
Earth orbiting the low-mass star 2MASS J05051443-4756154. The planet has an
orbital period of days ( 170 ms) and a radius of , and is likely terrestrial based on the observed
mass-radius distribution of small exoplanets at similar insolations. The star
is 14.008 pc away and we estimate its mass and radius to be and , respectively. The
star is distinctive in its very short rotational period of hours and correspondingly small Rossby number of 0.007 as
well as its high X-ray-to-bolometric luminosity ratio of based on a serendipitous XMM-Newton detection during a slew operation.
This is consistent with the X-ray emission being observed at a maximum value of
as predicted for the most rapidly rotating M
dwarfs. TOI 540 b may be an alluring target to study atmospheric erosion due to
the strong stellar X-ray emission. It is also among the most accessible targets
for transmission and emission spectroscopy and eclipse photometry with JWST,
and may permit Doppler tomography with high-resolution spectroscopy during
transit. This discovery is based on precise photometric data from TESS and
ground-based follow-up observations by the MEarth team.Comment: 18 pages, 7 figures. Accepted for publication in The Astronomical
Journa
Validation of TOI-1221 b: A warm sub-Neptune exhibiting TTVs around a Sun-like star
We present a validation of the long-period (
days) transiting sub-Neptune planet TOI-1221 b (TIC 349095149.01) around a
Sun-like (m=10.5) star. This is one of the few known exoplanets with
period >50 days, and belongs to the even smaller subset of which have bright
enough hosts for detailed spectroscopic follow-up. We combine TESS light curves
and ground-based time-series photometry from PEST (0.3~m) and LCOGT (1.0~m) to
analyze the transit signals and rule out nearby stars as potential false
positive sources. High-contrast imaging from SOAR and Gemini/Zorro rule out
nearby stellar contaminants. Reconnaissance spectroscopy from CHIRON sets a
planetary scale upper mass limit on the transiting object (1.1 and 3.5 M at 1 and 3, respectively) and shows no sign of a
spectroscopic binary companion. We determine a planetary radius of , placing it in the sub-Neptune regime. With a
stellar insolation of , we calculate a
moderate equilibrium temperature of 440 K, assuming no albedo
and perfect heat redistribution. We find a false positive probability from
TRICERATOPS of FPP as well as other qualitative and
quantitative evidence to support the statistical validation of TOI-1221 b. We
find significant evidence (>) of oscillatory transit timing
variations, likely indicative of an additional non-transiting planet.Comment: 17 pages, 9 figures, 4 table
Science Priorities for Seamounts: Research Links to Conservation and Management
Seamounts shape the topography of all ocean basins and can be hotspots of biological activity in the deep sea. The Census of Marine Life on Seamounts (CenSeam) was a field program that examined seamounts as part of the global Census of Marine Life (CoML) initiative from 2005 to 2010. CenSeam progressed seamount science by collating historical data, collecting new data, undertaking regional and global analyses of seamount biodiversity, mapping species and habitat distributions, challenging established paradigms of seamount ecology, developing new hypotheses, and documenting the impacts of human activities on seamounts. However, because of the large number of seamounts globally, much about the structure, function and connectivity of seamount ecosystems remains unexplored and unknown. Continual, and potentially increasing, threats to seamount resources from fishing and seabed mining are creating a pressing demand for research to inform conservation and management strategies. To meet this need, intensive science effort in the following areas will be needed: 1) Improved physical and biological data; of particular importance is information on seamount location, physical characteristics (e.g. habitat heterogeneity and complexity), more complete and intensive biodiversity inventories, and increased understanding of seamount connectivity and faunal dispersal; 2) New human impact data; these shall encompass better studies on the effects of human activities on seamount ecosystems, as well as monitoring long-term changes in seamount assemblages following impacts (e.g. recovery); 3) Global data repositories; there is a pressing need for more comprehensive fisheries catch and effort data, especially on the high seas, and compilation or maintenance of geological and biodiversity databases that underpin regional and global analyses; 4) Application of support tools in a data-poor environment; conservation and management will have to increasingly rely on predictive modelling techniques, critical evaluation of environmental surrogates as faunal “proxies”, and ecological risk assessment
An atlas of seabed biodiversity for Aotearoa New Zealand
\ua9 2023 Copernicus GmbH. All rights reserved. The waters of Aotearoa New Zealand span over 4.2ĝ€\uafmillionĝ€\uafkm2 of the South Pacific Ocean and harbour a rich diversity of seafloor-Associated taxa. Due to the immensity and remoteness of the area, there are significant gaps in the availability of data that can be used to quantify and map the distribution of seafloor and demersal biodiversity, limiting effective management. In this study, we describe the development and accessibility of an online atlas of seabed biodiversity that aims to fill these gaps. Species distribution models were developed for 579 taxa across four taxonomic groups: demersal fish, reef fish, subtidal invertebrates and macroalgae. Spatial layers for taxa distribution based on habitat suitability were statistically validated and then, as a further check, evaluated by taxonomic experts to provide measures of confidence to guide the future use of these layers. Spatially explicit uncertainty (SD) layers were also developed for each taxon distribution. We generated layer-specific metadata, including statistical and expert evaluation scores, which were uploaded alongside the accompanying spatial layers to the open access database Zenodo. This database provides the most comprehensive source of information on the distribution of seafloor taxa for Aotearoa New Zealand and is thus a valuable resource for managers, researchers and the public that will guide the management and conservation of seafloor communities. The atlas of seabed biodiversity for Aotearoa New Zealand is freely accessible via the open-Access database Zenodo under 10.5281/zenodo.7083642 (Stephenson et al., 2022)
LHS 1815b: The First Thick-disk Planet Detected By TESS
We report the first discovery of a thick-disk planet, LHS 1815b (TOI-704b, TIC 260004324), detected in the Transiting Exoplanet Survey Satellite (TESS) survey. LHS 1815b transits a bright (V = 12.19 mag, K = 7.99 mag) and quiet M dwarf located 29.87 ± 0.02 pc away with a mass of 0.502 ± 0.015 M ⊙ and a radius of 0.501 ± 0.030 R ⊙. We validate the planet by combining space- and ground-based photometry, spectroscopy, and imaging. The planet has a radius of 1.088 ± 0.064 R ⊕ with a 3σ mass upper limit of 8.7 M ⊕. We analyze the galactic kinematics and orbit of the host star LHS 1815 and find that it has a large probability (P thick/P thin = 6482) to be in the thick disk with a much higher expected maximal height (Z max = 1.8 kpc) above the Galactic plane compared with other TESS planet host stars. Future studies of the interior structure and atmospheric properties of planets in such systems using, for example, the upcoming James Webb Space Telescope, can investigate the differences in formation efficiency and evolution for planetary systems between different Galactic components (thick disks, thin disks, and halo)
The TESS Grand Unified Hot Jupiter Survey. I. Ten TESS Planets
Hot Jupiters—short-period giant planets—were the first extrasolar planets to be discovered, but many questions about their origin remain. NASA\u27s Transiting Exoplanet Survey Satellite (TESS), an all-sky search for transiting planets, presents an opportunity to address these questions by constructing a uniform sample of hot Jupiters for demographic study through new detections and unifying the work of previous ground-based transit surveys. As the first results of an effort to build this large sample of planets, we report here the discovery of 10 new hot Jupiters (TOI-2193A b, TOI-2207b, TOI-2236b, TOI-2421b, TOI-2567b, TOI-2570b, TOI-3331b, TOI-3540A b, TOI-3693b, TOI-4137b). All of the planets were identified as planet candidates based on periodic flux dips observed by TESS, and were subsequently confirmed using ground-based time-series photometry, high-angular-resolution imaging, and high-resolution spectroscopy coordinated with the TESS Follow-up Observing Program. The 10 newly discovered planets orbit relatively bright F and G stars (G \u3c 12.5, Teff between 4800 and 6200 K). The planets\u27 orbital periods range from 2 to 10 days, and their masses range from 0.2 to 2.2 Jupiter masses. TOI-2421b is notable for being a Saturn-mass planet and TOI-2567b for being a sub-Saturn, with masses of 0.322 ± 0.073 and 0.195 ± 0.030 Jupiter masses, respectively. We also measured a detectably eccentric orbit (e = 0.17 ± 0.05) for TOI-2207b, a planet on an 8 day orbit, while placing an upper limit of e \u3c 0.052 for TOI-3693b, which has a 9 day orbital period. The 10 planets described here represent an important step toward using TESS to create a large and statistically useful sample of hot Jupiters
Revisiting the warm sub-Saturn TOI-1710b
The Transiting Exoplanet Survey Satellite (TESS) provides a continuous suite
of new planet candidates that need confirmation and precise mass determination
from ground-based observatories. This is the case for the G-type star TOI-1710,
which is known to host a transiting sub-Saturn planet
(28.34.7) in a long-period orbit
(P=24.28\,d). Here we combine archival SOPHIE and new and archival HARPS-N
radial velocity data with newly available TESS data to refine the planetary
parameters of the system and derive a new mass measurement for the transiting
planet, taking into account the impact of the stellar activity on the mass
measurement. We report for TOI-1710b a radius of
5.150.12, a mass of
18.44.5, and a mean bulk density of
0.730.18, which are consistent at
1.2, 1.5, and 0.7, respectively, with previous
measurements. Although there is not a significant difference in the final mass
measurement, we needed to add a Gaussian process component to successfully fit
the radial velocity dataset. This work illustrates that adding more
measurements does not necessarily imply a better mass determination in terms of
precision, even though they contribute to increasing our full understanding of
the system. Furthermore, TOI-1710b joins an intriguing class of planets with
radii in the range 4-8 that have no counterparts in the
Solar System. A large gaseous envelope and a bright host star make TOI-1710b a
very suitable candidate for follow-up atmospheric characterization.Comment: Accepted for publication in A&A. 21 pages, 14 figure
- …