119 research outputs found

    Tidally Heated Exomoons around ϵ\epsilon Eridani b: Observability and prospects for characterization

    Full text link
    Exomoons are expected to orbit gas giant exoplanets just as moons orbit solar system planets. Tidal heating is present in solar system satellites and it can heat up their interior depending on their orbital and interior properties. We aim to identify a Tidally Heated Exomoon's (THEM) orbital parameter space that would make it observable in infrared wavelengths with MIRI/JWST around ϵ\epsilon Eridani b. We study the possible constraints on orbital eccentricity and interior properties that a successful THEM detection in infrared wavelengths can bring. We also investigate what exomoon properties need to be independently known in order to place these constraints. We use a coupled thermal-tidal model to find stable equilibrium points between the tidally produced heat and heat transported within a moon. For the latter, we consider a spherical and radially symmetric satellite with heat being transported via magma advection in a sub-layer of melt (asthenosphere) and convection in the lower mantle. We incorporate uncertainties in the interior and tidal model parameters to assess the fraction of simulated moons that would be observable with MIRI. We find that a 2RIo2 R_{Io} THEM orbiting ϵ\epsilon Eridani b with an eccentricity of 0.02, would need to have a semi-major axis of 4 planetary Roche-radii for 100% of the simulations to produce an observable moon. These values are comparable with the orbital properties of gas giant solar system satellites. We place similar constraints for eccentricities up to 0.1. We conclude that if the semi-major axis and radius of the moon are known (eg. with exomoon transits), tidal dissipation can constrain the orbital eccentricity and interior properties of the satellite, such as the presence of melt and the thickness of the melt containing sub-layer

    Pulse rate and transit time analysis to predict hypotension events after spinal anesthesia during programmed cesarean labor

    Get PDF
    Prophylactic treatment has been proved to reduce hypotension incidence after spinal anesthesia during cesarean labor. However, the use of pharmacological prophylaxis could carry out undesirable side-effects on mother and fetus. Thus, the prediction of hypotension becomes an important challenge. Hypotension events are hypothesized to be related to a malfunctioning of autonomic nervous system (ANS) regulation of blood pressure. In this work, ANS responses to positional changes of 51 pregnant women programmed for a cesarean labor were explored for hypotension prediction. Lateral and supine decubitus, and sitting position were considered while electrocardiographic and pulse photoplethysmographic signals were recorded. Features based on heart rate variability, pulse rate variability (PRV) and pulse transit time (PTT) analysis were used in a logistic regression classifier. The results showed that PRV irregularity changes, assessed by approximate entropy, from supine to lateral decubitus, and standard deviation of PTT in supine decubitus were found as the combination of features that achieved the best classification results sensitivity of 76%, specificity of 70% and accuracy of 72%, being normotensive the positive class. Peripheral regulation and blood pressure changes, measured by PRV and PTT analysis, could help to predict hypotension events reducing prophylactic side-effects in the low-risk population

    Assessment of the use of technical software by the students in the context of mechanical engineering

    Full text link
    [EN] In the framework of the European Higher Education area, university teaching has focused in recent years on adapting Master's and Bachelor's degrees to the demands of the professional sector. To do this, the training and development of the generic and specific skills recommended for the incorporation of students into the job market have been priority objectives in the approach to study plans. However, there is no consensus on the methodologies for evaluating these skills, especially regarding how to separate the acquisition and / or improvement of the skills from the specific knowledge and skills of the subjects. Due to the lack of time, teaching staff seek methodologies that do not involve additional tests for the evaluation of competences, which would increase the number of tests to a non-realistic number with the corresponding assessment duties for the professors. In order to make a contribution in this regard, this work presents an approach for evaluating the ability to handle specific software applied to problems in the area of mechanical engineering. This work proposes a methodology for acquiring the required skills and an evaluation system to grade the degree of expertise in the manipulation of the software. In our University, this skill is called the Specific Instrumental Skill, which measures the ability of the students for using the tools in engineering, like, in this case, the use of software to run structural numerical simulations as ANSYS®. The methodology proposed is based on an a priori training. This training is based on 2 hours weekly sessions where the students should solve, in groups of 2 or 3 students, a set of labs with the help of the professor. The students do not need to deliver any report to the professor since the objective of the sessions is the training of the students. Therefore, the pressure over the student is low and the professor avoid to mark a high number of student¿s reports, allowing him to focus only on the learning process of the students and not on the evaluation during the training sessions. These labs increase the difficulty along a number of sessions. The last session consists in an exam in which the students must solve a lab similar to those already solved during the training sessions. This time, each student will work individually without the help of the professor and with a control of the time. Finally, the performance of the methodology is checked by a cross-test for the same students who are part of the group of students of another subject (control subject) where the same tool (ANSYS®) is used. The collected data showed that the students following this methodology acquire the sufficient expertise for handling the software and their skills outperform those of the students of the control subject who did not follow the proposed methodology. As a conclusion, the methodology proposed in this work guarantees a good level of expertise for the students, as shown by the results. Since the results in the final lab exam and the results of the cross-test coincides, the use of the final test exam could be interpreted as a good indicator of the degree of expertise in the use of the software. Additionally, the proposed methodology reduces the work load for the professor as it only requires assessing 1 report per student (instead of several reports for each group of 2 or 3 students in each of the session) while ensuring the authorship of the report.Authors gratefully acknowledge the financial support of the Vicerrectorado de Estudios, Calidad y Acreditación and the Vicerrectorado de Recursos Digitales y Documentación of the Universitat Politècnica de València (project PIME B/19-20/165) and the Instituto de Ciencias de la Educación of the Universitat Politècnica de València (EICE INTEGRAL).Nadal, E.; Rupérez Moreno, MJ.; Giner Navarro, J.; Rovira, A.; Ródenas, JJ.; Martínez Casas, J.; Pedrosa, AM. (2020). Assessment of the use of technical software by the students in the context of mechanical engineering. IATED Academy. 3344-3348. https://doi.org/10.21125/iceri.2020.0756S3344334

    Hypersensitivity to Contingent Behavior in Paranoia: A New Virtual Reality Paradigm

    Get PDF
    Contingency in interpersonal relationships is associated with the development of secure attachment and trust, whereas paranoia arises from the overattribution of negative intentions. We used a new virtual reality paradigm to experimentally investigate the impact of contingent behavior on trust along the paranoia continuum. Sixty-one healthy participants were randomly allocated to have a social interaction with a pleasant virtual human (avatar) programmed to be highly responsive or not (high/low contingency). Perceived trustworthiness and trusting behavior were assessed alongside control variables attachment and anxiety. Higher paranoia and dismissive attachment were associated with larger interpersonal distances. Unexpectedly, extremely paranoid individuals experienced the highly contingent avatar as more trustworthy than their low contingency counterpart. Higher dismissive attachment was also associated with more subjective trust in both conditions. Extreme paranoia is associated with hypersensitivity to noncontingent behavior, which might explain experiences of mistrust when others are not highly responsive in everyday social situations

    Field testing, validation and optimization report

    Get PDF
    The COMMON SENSE project has been designed and planned in order to meet the general and specific scientific and technical objectives mentioned in its Description of Work (page 77). As the overall strategy, the 11 work packages (WPs) of the work plan were grouped into 3 key phases: (1) RD basis for cost-effective sensor development , (2) Sensor development, sensor web platform and integration, and (3) Field testing. In the first two phases, partners involved in WP1 and WP2 have provided a general understanding and integrated basis for a cost effective sensors development. Within the following WPs 4 to 8 the new sensors were created and integrated into different identified platforms. During the third phase of field testing (WP9), partners have deployed precompetitive prototypes at chosen platforms (e.g. research vessels, oil platforms, buoys and submerged moorings, ocean racing yachts, drifting buoys). Starting from August 2015 (month 22; task 9.2), these platforms have allowed the partnership to test the adaptability and performance of the in-situ sensors and verify if the transmission of data is properly made, correcting deviations. In task 9.1 all stakeholders identified in WP2 have been contacted in order to agree upon a coordinated agenda for the field testing phase for each of the platforms. Field testing procedures (WP2) and deployment specificities, defined during sensor development in WPs 4 to 8, have been closely studied by all stakeholders involved in field testing activities in order for everyone to know their role, how to proceed and to provide themselves with the necessary material and equipment (e.g. transport of instruments). All this information have provided the basis for designing and coordinating field testing activities. Subsequently, the available new sensors have been tested since August 2015 till mid-October of the current year (2016) as part of task 9.2, following the indications defined in D9.1, such as the intercomparison of the new sensors with commercial ones, when possible. The availability of new sensors was quite different in time starting with the first tests in September and October 2015 on noise, nutrient and heavy metals sensors and closing with pCO2 in late September 2016. Sensors are technically fully described in the deliverables of WPs 3 to 8 and are here just mentioned where necessary. For further details, please consider those reports. Objectives and rationale The protocols prepared in D9.1 have been verified during the field testing activities of the innovative sensors on platforms. These can be summarized into 3 categories: (1) Research vessels (regular cruises); (2) Fixed platforms; (3) Ocean racing yachts. An exhaustive analysis of the different data obtained during field testing activities has been carried on in order to set possible optimization actions for prototypes design and performances. The data from each platform have been analyzed to verify limits and optimal installations or possible improvements. Finally a set of possible optimization actions has been defined. Data and observations collected during the course of field testing have been used to iteratively optimize the design and performance of the precompetitive prototypes

    Height and timing of growth spurt during puberty in young people living with vertically acquired HIV in Europe and Thailand.

    Get PDF
    OBJECTIVE: The aim of this study was to describe growth during puberty in young people with vertically acquired HIV. DESIGN: Pooled data from 12 paediatric HIV cohorts in Europe and Thailand. METHODS: One thousand and ninety-four children initiating a nonnucleoside reverse transcriptase inhibitor or boosted protease inhibitor based regimen aged 1-10 years were included. Super Imposition by Translation And Rotation (SITAR) models described growth from age 8 years using three parameters (average height, timing and shape of the growth spurt), dependent on age and height-for-age z-score (HAZ) (WHO references) at antiretroviral therapy (ART) initiation. Multivariate regression explored characteristics associated with these three parameters. RESULTS: At ART initiation, median age and HAZ was 6.4 [interquartile range (IQR): 2.8, 9.0] years and -1.2 (IQR: -2.3 to -0.2), respectively. Median follow-up was 9.1 (IQR: 6.9, 11.4) years. In girls, older age and lower HAZ at ART initiation were independently associated with a growth spurt which occurred 0.41 (95% confidence interval 0.20-0.62) years later in children starting ART age 6 to 10 years compared with 1 to 2 years and 1.50 (1.21-1.78) years later in those starting with HAZ less than -3 compared with HAZ at least -1. Later growth spurts in girls resulted in continued height growth into later adolescence. In boys starting ART with HAZ less than -1, growth spurts were later in children starting ART in the oldest age group, but for HAZ at least -1, there was no association with age. Girls and boys who initiated ART with HAZ at least -1 maintained a similar height to the WHO reference mean. CONCLUSION: Stunting at ART initiation was associated with later growth spurts in girls. Children with HAZ at least -1 at ART initiation grew in height at the level expected in HIV negative children of a comparable age
    corecore