2,982 research outputs found

    Quantitative detection of atropine-delayed gastric emptying in the horse by the <sup>13</sup>C-octanoic acid breath test

    Get PDF
    The &lt;sup&gt;13&lt;/sup&gt;C-octanoic acid breath test has been correlated significantly to radioscintigraphy for measurement of gastric emptying indices in healthy horses. The objective of this study was to investigate the validity of the test for measurement of equine delayed gastric emptying, prior to its potential clinical application for this purpose. A model of atropine- induced gastroparesis was used. Gastric emptying rate was measured twice in 8 horses using concurrent radioscintigraphy and/or breath test after treatment i.v. with either atropine (0.035 mg/kg bwt) or saline in randomised order. Analysis of both data sets demonstrated that the atropine treatment had caused a significant delay in gastric emptying rate. Paired breath test data showed an atropine-induced delay in gastric half-emptying time t(1/2)), with no overlap in the 99% Cl range (P&#60;0.001). Significant correlations were found between scintigraphy and &lt;sup&gt;13&lt;/sup&gt;C-octanoic acid breath test for calculation of both t(1/2) (P&#60;0.01) and lag phase duration (P&#60;0.05) in the atropine-delayed emptying results. The mean (s.d.) bias in breath test t(1/2) when compared with scintigraphy was 1.78 (0.58) h. The results demonstrated that the &lt;sup&gt;13&lt;/sup&gt;C-octanoic acid breath test was an effective diagnostic modality for the measurement of equine delayed gastric emptying. The technique offers advantages to existing methods for clinical investigation, as it is noninvasive, not radioactive, quantitative and requires minimal equipment or training to perform

    Calculation of the spectrum of 12Li by using the multistep shell model method in the complex energy plane

    Full text link
    The unbound nucleus 12^{12}Li is evaluated by using the multistep shell model in the complex energy plane assuming that the spectrum is determined by the motion of three neutrons outside the 9^9Li core. It is found that the ground state of this system consists of an antibound 1/2+1/2^+ state and that only this and a 1/21/2^- and a 5/2+5/2^+ excited states are physically meaningful resonances.Comment: 9 pages, 5 tables, 7 figures, printer-friendly versio

    Scanamorphos: a map-making software for Herschel and similar scanning bolometer arrays

    Full text link
    Scanamorphos is one of the public softwares available to post-process scan observations performed with the Herschel photometer arrays. This post-processing mainly consists in subtracting the total low-frequency noise (both its thermal and non-thermal components), masking high-frequency artefacts such as cosmic ray hits, and projecting the data onto a map. Although it was developed for Herschel, it is also applicable with minimal adjustment to scan observations made with some other imaging arrays subjected to low-frequency noise, provided they entail sufficient redundancy; it was successfully applied to P-Artemis, an instrument operating on the APEX telescope. Contrary to matrix-inversion softwares and high-pass filters, Scanamorphos does not assume any particular noise model, and does not apply any Fourier-space filtering to the data, but is an empirical tool using purely the redundancy built in the observations -- taking advantage of the fact that each portion of the sky is sampled at multiple times by multiple bolometers. It is an interactive software in the sense that the user is allowed to optionally visualize and control results at each intermediate step, but the processing is fully automated. This paper describes the principles and algorithm of Scanamorphos and presents several examples of application.Comment: This is the final version as accepted by PASP (on July 27, 2013). A copy with much better-quality figures is available on http://www2.iap.fr/users/roussel/herschel

    Optimizing space constellations for mobile satellite systems

    Get PDF
    Designing a mobile satellite system entails many complex trade-offs between a great number of parameters including: capacity, complexity of the payload, constellation geometry, number of satellites, quality of coverage, etc. This paper aims at defining a methodology which tries to split the variables to give rapidly some first results. The major input considered is the traffic assumption which would be offered by the system. A first key step is the choice of the best Rider or Walker constellation geometries - with different numbers of satellites - to insure a good quality of coverage over a selected service area. Another aspect to be addressed is the possible altitude location of the constellation, since it is limited by many constraints. The altitude ranges that seem appropriate considering the spatial environment, the launch and orbit keeping policy and the feasibility of the antenna allowing sufficient frequency reuse are briefly analyzed. To support these first considerations, some 'reference constellations' with similar coverage quality are chosen. The in-orbit capacity needed to support the assumed traffic is computed versus altitude. Finally, the exact number of satellite is determined. It comes as an optimum between a small number of satellites offering a high (and costly) power margin in bad propagation situation and a great number of less powerful satellites granting the same quality of service

    Logarithmic behavior of degradation dynamics in metal--oxide semiconductor devices

    Full text link
    In this paper the authors describe a theoretical simple statistical modelling of relaxation process in metal-oxide semiconductor devices that governs its degradation. Basically, starting from an initial state where a given number of traps are occupied, the dynamics of the relaxation process is measured calculating the density of occupied traps and its fluctuations (second moment) as function of time. Our theoretical results show a universal logarithmic law for the density of occupied traps ˉϕ(T,EF)(A+Blnt)\bar{} \sim \phi (T,E_{F}) (A+B \ln t), i.e., the degradation is logarithmic and its amplitude depends on the temperature and Fermi Level of device. Our approach reduces the work to the averages determined by simple binomial sums that are corroborated by our Monte Carlo simulations and by experimental results from literature, which bear in mind enlightening elucidations about the physics of degradation of semiconductor devices of our modern life

    A Spitzer Unbiased Ultradeep Spectroscopic Survey

    Get PDF
    We carried out an unbiased, spectroscopic survey using the low-resolution module of the infrared spectrograph (IRS) on board Spitzer targeting two 2.6 square arcminute regions in the GOODS-North field. IRS was used in spectral mapping mode with 5 hours of effective integration time per pixel. One region was covered between 14 and 21 microns and the other between 20 and 35 microns. We extracted spectra for 45 sources. About 84% of the sources have reported detections by GOODS at 24 microns, with a median F_nu(24um) ~ 100 uJy. All but one source are detected in all four IRAC bands, 3.6 to 8 microns. We use a new cross-correlation technique to measure redshifts and estimate IRS spectral types; this was successful for ~60% of the spectra. Fourteen sources show significant PAH emission, four mostly SiO absorption, eight present mixed spectral signatures (low PAH and/or SiO) and two show a single line in emission. For the remaining 17, no spectral features were detected. Redshifts range from z ~ 0.2 to z ~ 2.2, with a median of 1. IR Luminosities are roughly estimated from 24 microns flux densities, and have median values of 2.2 x 10^{11} L_{\odot} and 7.5 x 10^{11} L_{\odot} at z ~ 1 and z ~ 2 respectively. This sample has fewer AGN than previous faint samples observed with IRS, which we attribute to the fainter luminosities reached here.Comment: Published in Ap

    Validation of the <sup>13</sup>C-octanoic acid breath test for measurement of equine gastric emptying rate of solids using radioscintigraphy

    Get PDF
    Reasons for performing study: Disordered gastric motility may be a significant factor in the pathogenesis of many equine conditions. Although tests for liquid phase emptying rate have been validated in the horse, there are no effective tests for solid phase emptying measurement that can be performed routinely in the field. Objectives: The objective of this study was the assessment of a novel stable isotope technique, the &lt;sup&gt;13&lt;/sup&gt;C-octane acid breath test (&lt;sup&gt;13&lt;/sup&gt; C-OABT), for the measurement of gastric emptying of solid ingesta, by direct comparison with the optimum method of gastric scintigraphy. Methods: To facilitate dual measurement of gastric emptying, a test meal was used containing baked egg yolk labelled with both &lt;sup&gt;13&lt;/sup&gt;C-octanoic acid and (99m)technetium sulphur colloid. Simultaneous, serial lateral gastric scintigraphs and expiratory breath samples were obtained in 12 healthy horses after voluntary ingestion of the test meal. Analysis of breath (CO2)-C-13:(CO2)-C-12 ratio was performed by continuous flow isotope ratio mass spectrometry. Power regression was used to determine the gastric emptying coefficient, the gastric half-emptying time (t(1/2)) and duration of the lag phase (t(lag)). Results: Significant correlations (P &lt; 0.001) were found between the 2 techniques for measurement of both t(1/2) and t(lag). In addition, scintigraphic left t(1/2) was correlated significantly to breath test gastric emptying coefficient (P &lt; 0.001). Conclusions: It was concluded that the &lt;sup&gt;13&lt;/sup&gt;C-octanoic acid breath test is a reliable diagnostic procedure to measure gastric emptying rate of solids in the horse. Potential relevance: Being safe, noninvasive and easy to perform, this test has potential value as; both sensitive diagnostic modality and humane research tool for motility studies

    Spectral Mapping Reconstruction of Extended Sources

    Get PDF
    Three dimensional spectroscopy of extended sources is typically performed with dedicated integral field spectrographs. We describe a method of reconstructing full spectral cubes, with two spatial and one spectral dimension, from rastered spectral mapping observations employing a single slit in a traditional slit spectrograph. When the background and image characteristics are stable, as is often achieved in space, the use of traditional long slits for integral field spectroscopy can substantially reduce instrument complexity over dedicated integral field designs, without loss of mapping efficiency -- particularly compelling when a long slit mode for single unresolved source followup is separately required. We detail a custom flux-conserving cube reconstruction algorithm, discuss issues of extended source flux calibration, and describe CUBISM, a tool which implements these methods for spectral maps obtained with ther Spitzer Space Telescope's Infrared Spectrograph.Comment: 11 pages, 8 figures, accepted by PAS

    AKARI near-infrared spectroscopy of the aromatic and aliphatic hydrocarbon emission features in the galactic superwind of M 82

    Full text link
    Aims. We investigate the properties of hydrocarbon grains in the galactic superwind of M 82. Methods. With AKARI, we performed near-infrared (2.5 - 4.5 um) spectroscopic observations of 34 regions in M 82 including its northern and southern halos. Results. Many of the spectra show strong emission at 3.3 um due to polycyclic aromatic hydrocarbons (PAHs) and relatively weak features at 3.4 - 3.6 um due to aliphatic hydrocarbons. In particular, we clearly detect the PAH 3.3 um emission and the 3.4 - 3.6 um features in halo regions, which are located at a distance of 2 kpc away from the galactic center. We find that the ratios of the 3.4 - 3.6 um features to the 3.3 um feature intensity significantly increase with distance from the galactic center, while the ratios of the 3.3 um feature to the AKARI 7 um band intensity do not. Conclusions. Our results clearly confirm the presence of small PAHs even in a harsh environment of the halo of M 82. The results also reveal that the aliphatic hydrocarbons emitting the 3.4 - 3.6 um features are unusually abundant in the halo, suggesting that small carbonaceous grains are produced by shattering of larger grains in the galactic superwind.Comment: 5 pages, 3 figures, 1 table, accepted for publication in A&
    corecore