Three dimensional spectroscopy of extended sources is typically performed
with dedicated integral field spectrographs. We describe a method of
reconstructing full spectral cubes, with two spatial and one spectral
dimension, from rastered spectral mapping observations employing a single slit
in a traditional slit spectrograph. When the background and image
characteristics are stable, as is often achieved in space, the use of
traditional long slits for integral field spectroscopy can substantially reduce
instrument complexity over dedicated integral field designs, without loss of
mapping efficiency -- particularly compelling when a long slit mode for single
unresolved source followup is separately required. We detail a custom
flux-conserving cube reconstruction algorithm, discuss issues of extended
source flux calibration, and describe CUBISM, a tool which implements these
methods for spectral maps obtained with ther Spitzer Space Telescope's Infrared
Spectrograph.Comment: 11 pages, 8 figures, accepted by PAS