202 research outputs found
Logarithmic behavior of degradation dynamics in metal--oxide semiconductor devices
In this paper the authors describe a theoretical simple statistical modelling
of relaxation process in metal-oxide semiconductor devices that governs its
degradation. Basically, starting from an initial state where a given number of
traps are occupied, the dynamics of the relaxation process is measured
calculating the density of occupied traps and its fluctuations (second moment)
as function of time. Our theoretical results show a universal logarithmic law
for the density of occupied traps , i.e., the degradation is logarithmic and its amplitude depends on the
temperature and Fermi Level of device. Our approach reduces the work to the
averages determined by simple binomial sums that are corroborated by our Monte
Carlo simulations and by experimental results from literature, which bear in
mind enlightening elucidations about the physics of degradation of
semiconductor devices of our modern life
Pygmy resonances in Sn isotopes within a microscopic multiphonon approach
We study the pygmy resonances in Sn isotopes within a microscopic multiphonon approach which has been successfully applied to heavy ion reactions in recent years. In the energy region of the pygmy resonances there are a few low lying multiphonon states. The question is whether they may contribute to the observed peak. Calculations show that the inelastic cross sections in the relevant energy region have a conisderable increase depending on the isotope and on the kind of Skyrme force used
The fundamental parameters of the roAp star Equulei
Physical processes working in the stellar interiors as well as the evolution
of stars depend on some fundamental stellar properties, such as mass, radius,
luminosity, and chemical abundances. A classical way to test stellar interior
models is to compare the predicted and observed location of a star on
theoretical evolutionary tracks in a H-R diagram. This requires the best
possible determinations of stellar mass, radius, luminosity and abundances. To
derive its fundamental parameters, we observed the well-known rapidly
oscillating Ap star, Equ, using the visible spectro-interferometer
VEGA installed on the optical CHARA array. We computed the calibrated squared
visibility and derived the limb-darkened diameter. We used the whole energy
flux distribution, the parallax and this angular diameter to determine the
luminosity and the effective temperature of the star. We obtained a
limb-darkened angular diameter of 0.564~~0.017~mas and deduced a radius of
~=~2.20~~0.12~. Without considering the multiple
nature of the system, we derived a bolometric flux of erg~cm~s and an effective temperature of
7364~~235~K, which is below the effective temperature that has been
previously determined. Under the same conditions we found a luminosity of
~=~12.8~~1.4~. When the contribution of the closest
companion to the bolometric flux is considered, we found that the effective
temperature and luminosity of the primary star can be, respectively, up to
~100~K and up to ~0.8~L smaller than the values mentioned
above.These new values of the radius and effective temperature should bring
further constraints on the asteroseismic modelling of the star.Comment: Accepted by A&
Annual Survey of Virginia Law: Employment Law
This survey covers legislative and judicial developments in Virginia employment law between June 1986 and June 1987. It does not address the workers\u27 compensation and unemployment compensation statutes but focuses on state labor and fair employment laws and the employment-at-will doctrine
Nuclear break-up of 11Be
The break-up of 11Be was studied at 41AMeV using a secondary beam of 11Be
from the GANIL facility on a 48Ti target by measuring correlations between the
10Be core, the emitted neutrons and gamma rays. The nuclear break-up leading to
the emission of a neutron at large angle in the laboratory frame is identified
with the towing mode through its characteristic n-fragment correlation. The
experimental spectra are compared with a model where the time dependent
Schrodinger equation (TDSE) is solved for the neutron initially in the 11 Be. A
good agreement is found between experiment and theory for the shapes of neutron
experimental energies and angular distributions. The spectroscopic factor of
the 2s orbital is tentatively extracted to be 0.46+-0.15. The neutron emission
from the 1p and 1d orbitals is also studied
Time, spatial, and spectral resolution of the Halpha line-formation region of Deneb and Rigel with the VEGA/CHARA interferometer
BA-type supergiants are amongst the most optically-bright stars. They are
observable in extragalactic environments, hence potential accurate distance
indicators. Emission activity in the Halpha line of the BA supergiants Rigel
(B8Ia) and Deneb (A2Ia) is indicative of presence of localized time-dependent
mass ejections. Here, we employ optical interferometry to study the Halpha
line-formation region in these stellar environments. High spatial- (0.001
arcsec) and spectral- (R=30 000) resolution observations of Halpha were
obtained with the visible recombiner VEGA installed on the CHARA
interferometer, using the S1S2 array-baseline (34m). Six independent
observations were done on Deneb over the years 2008 and 2009, and two on Rigel
in 2009. We analyze this dataset with the 1D non-LTE radiative-transfer code
CMFGEN, and assess the impact of the wind on the visible and near-IR
interferometric signatures, using both Balmer-line and continuum photons. We
observe a visibility decrease in Halpha for both Rigel and Deneb, suggesting
that the line-formation region is extended (1.5-1.75 R*). We observe a
significant visibility decrease for Deneb in the SiII6371 line. We witness time
variations in the differential phase for Deneb, implying an inhomogeneous and
unsteady circumstellar environment, while no such variability is seen in
differential visibilities. Radiative-transfer modeling of Deneb, with allowance
for stellar-wind mass loss, accounts fairly well for the observed decrease in
the Halpha visibility. Based on the observed differential visibilities, we
estimate that the mass-loss rate of Deneb has changed by less than 5%
First AMBER/VLTI observations of hot massive stars
AMBER is the first near infrared focal instrument of the VLTI. It combines
three telescopes and produces spectrally resolved interferometric measures.
This paper discusses some preliminary results of the first scientific
observations of AMBER with three Unit Telescopes at medium (1500) and high
(12000) spectral resolution. We derive a first set of constraints on the
structure of the circumstellar material around the Wolf Rayet Gamma2 Velorum
and the LBV Eta Carinae
Evidence of triggered star formation in G327.3-0.6. Dust-continuum mapping of an infrared dark cloud with P-ArT\'eMiS
Aims. Expanding HII regions and propagating shocks are common in the
environment of young high-mass star-forming complexes. They can compress a
pre-existing molecular cloud and trigger the formation of dense cores. We
investigate whether these phenomena can explain the formation of high-mass
protostars within an infrared dark cloud located at the position of G327.3-0.6
in the Galactic plane, in between two large infrared bubbles and two HII
regions. Methods: The region of G327.3-0.6 was imaged at 450 ? m with the CEA
P-ArT\'eMiS bolometer array on the Atacama Pathfinder EXperiment telescope in
Chile. APEX/LABOCA and APEX-2A, and Spitzer/IRAC and MIPS archives data were
used in this study. Results: Ten massive cores were detected in the P-ArT\'eMiS
image, embedded within the infrared dark cloud seen in absorption at both 8 and
24 ?m. Their luminosities and masses indicate that they form high-mass stars.
The kinematical study of the region suggests that the infrared bubbles expand
toward the infrared dark cloud. Conclusions: Under the influence of expanding
bubbles, star formation occurs in the infrared dark areas at the border of HII
regions and infrared bubbles.Comment: 4 page
The Aquila prestellar core population revealed by Herschel
The origin and possible universality of the stellar initial mass function
(IMF) is a major issue in astrophysics. One of the main objectives of the
Herschel Gould Belt Survey is to clarify the link between the prestellar core
mass function (CMF) and the IMF. We present and discuss the core mass function
derived from Herschel data for the large population of prestellar cores
discovered with SPIRE and PACS in the Aquila Rift cloud complex at d ~ 260 pc.
We detect a total of 541 starless cores in the entire ~11 deg^2 area of the
field imaged at 70-500 micron with SPIRE/PACS. Most of these cores appear to be
gravitationally bound, and thus prestellar in nature. Our Herschel results
confirm that the shape of the prestellar CMF resembles the stellar IMF, with
much higher quality statistics than earlier submillimeter continuum
ground-based surveys
- …