577 research outputs found

    Ewald Sums for One Dimension

    Full text link
    We derive analytic solutions for the potential and field in a one-dimensional system of masses or charges with periodic boundary conditions, in other words Ewald sums for one dimension. We also provide a set of tools for exploring the system evolution and show that it's possible to construct an efficient algorithm for carrying out simulations. In the cosmological setting we show that two approaches for satisfying periodic boundary conditions, one overly specified and the other completely general, provide a nearly identical clustering evolution until the number of clusters becomes small, at which time the influence of any size-dependent boundary cannot be ignored. Finally we compare the results with other recent work with the hope of providing clarification over differences these issues have induced. We explain that modern formulations of physics require a well defined potential which is not available if the forces are screened directly.Comment: 2 figures added references expanded discussion of algorithm corrected figures added discussion of screened forc

    On the morphology of the electron-positron annihilation emission as seen by SPI/INTEGRAL

    Full text link
    The 511 keV positron annihilation emission remains a mysterious component of the high energy emission of our Galaxy. Its study was one of the key scientific objective of the SPI spectrometer on-board the INTEGRAL satellite. In fact, a lot of observing time has been dedicated to the Galactic disk with a particular emphasis on the central region. A crucial issue in such an analysis concerns the reduction technique used to treat this huge quantity of data, and more particularly the background modeling. Our method, after validation through a variety of tests, is based on detector pattern determination per ~6 month periods, together with a normalisation variable on a few hour timescale. The Galactic bulge is detected at a level of ~70 sigma allowing more detailed investigations. The main result is that the bulge morphology can be modelled with two axisymmetric Gaussians of 3.2 deg. and 11.8 deg. FWHM and respective fluxes of 2.5 and 5.4 x 10^-4 photons/(cm^2.s^1). We found a possible shift of the bulge centre towards negative longitude at l=-0.6 +/- 0.2 degrees. In addition to the bulge, a more extended structure is detected significantly with flux ranging from 1.7 to 2.9 x10^-3 photons/(cm^2.s^1) depending on its assumed geometry (pure disk or disk plus halo). The disk emission is also found to be symmetric within the limits of the statistical errors.Comment: This paper has 12 pages and 14 figures. Accepted for publication by the Astrophysical Journa

    Rapid and MR-Independent IK1 activation by aldosterone during ischemia-reperfusion

    Get PDF
    In ST elevation myocardial infarction (STEMI) context, clinical studies have shown the deleterious effect of high aldosterone levels on ventricular arrhythmia occurrence and cardiac mortality. Previous in vitro reports showed that during ischemia-reperfusion, aldosterone modulates K+ currents involved in the holding of the resting membrane potential (RMP). The aim of this study was to assess the electrophysiological impact of aldosterone on IK1 current during myocardial ischemia-reperfusion. We used an in vitro model of “border zone” using right rabbit ventricle and standard microelectrode technique followed by cell-attached recordings from freshly isolated rabbit ventricular cardiomyocytes. In microelectrode experiments, aldosterone (10 and 100 nmol/L, n=7 respectively) increased the action potential duration (APD) dispersion at 90% between ischemic and normoxic zones (from 95±4ms to 116±6 ms and 127±5 ms respectively, P<0.05) and reperfusion-induced sustained premature ventricular contractions occurrence (from 2/12 to 5/7 preparations, P<0.05). Conversely, potassium canrenoate 100 nmol/L and RU 28318 1 μmol/l alone did not affect AP parameters and premature ventricular contractions occurrence (except Vmax which was decreased by potassium canrenoate during simulated-ischemia). Furthermore, aldosterone induced a RMP hyperpolarization, evoking an implication of a K+ current involved in the holding of the RMP. Cell-attached recordings showed that aldosterone 10 nmol/L quickly activated (within 6.2±0.4 min) a 30 pS K+-selective current, inward rectifier, with pharmacological and biophysical properties consistent with the IK1 current (NPo =1.9±0.4 in control vs NPo=3.0±0.4, n=10, P<0.05). These deleterious effects persisted in presence of RU 28318, a specific MR antagonist, and were successfully prevented by potassium canrenoate, a non specific MR antagonist, in both microelectrode and patch-clamp recordings, thus indicating a MR-independent IK1 activation. In this ischemia-reperfusion context, aldosterone induced rapid and MR-independent deleterious effects including an arrhythmia substrate (increased APD90 dispersion) and triggered activities (increased premature ventricular contractions occurrence on reperfusion) possibly related to direct IK1 activation

    Formation of fractal structure in many-body systems with attractive power-law potentials

    Full text link
    We study the formation of fractal structure in one-dimensional many-body systems with attractive power-law potentials. Numerical analysis shows that the range of the index of the power for which fractal structure emerges is limited. Dependence of the growth rate on wavenumber and power-index is obtained by linear analysis of the collisionless Boltzmann equation, which supports the numerical results.Comment: accepted by PR

    A continuous non-linear shadowing model of columnar growth

    Full text link
    We propose the first continuous model with long range screening (shadowing) that described columnar growth in one space dimension, as observed in plasma sputter deposition. It is based on a new continuous partial derivative equation with non-linear diffusion and where the shadowing effects apply on all the different processes.Comment: Fast Track Communicatio

    On the dynamics of a self-gravitating medium with random and non-random initial conditions

    Full text link
    The dynamics of a one-dimensional self-gravitating medium, with initial density almost uniform is studied. Numerical experiments are performed with ordered and with Gaussian random initial conditions. The phase space portraits are shown to be qualitatively similar to shock waves, in particular with initial conditions of Brownian type. The PDF of the mass distribution is investigated.Comment: Latex, figures in eps, 23 pages, 11 figures. Revised versio

    Electron-impact ionization of atomic hydrogen at 2 eV above threshold

    Get PDF
    The convergent close-coupling method is applied to the calculation of fully differential cross sections for ionization of atomic hydrogen by 15.6 eV electrons. We find that even at this low energy the method is able to yield predictive results with small uncertainty. As a consequence we suspect that the experimental normalization at this energy is approximately a factor of two too high.Comment: 10 page

    Characteristics of the summit lakes of Ambae volcano and their potential for generating lahars

    Get PDF
    Volcanic eruptions through crater lakes often generate lahars, causing loss of life and property. On Ambae volcano, recent eruptive activities have rather tended to reduce the water volume in the crater lake (Lake Voui), in turn, reducing the chances for outburst floods. Lake Voui occupies a central position in the summit caldera and is well enclosed by the caldera relief. Eruptions with significantly higher magnitude than that of 1995 and 2005 are required for an outburst. A more probable scenario for lahar events is the overflow from Lake Manaro Lakua bounded on the eastern side by the caldera wall. Morphology and bathymetry analysis have been used to identify the weakest point of the caldera rim from which water from Lake Manaro Lakua may overflow to initiate lahars. The 1916 disaster described on south-east Ambae was possibly triggered by such an outburst from Lake Manaro Lakua. Taking into account the current level of Lake Manaro Lakua well below a critical overflow point, and the apparently low potential of Lake Voui eruptions to trigger lahars, the Ambae summit lakes may not be directly responsible for numerous lahar deposits identified around the Island

    Possible common central pathway for resistin and insulin in regulating food intake.

    Get PDF
    Aim: Adipose tissue has been the object of intense research in the field of obesity and diabetes diseases in the last decade. Examination of adipocyte-secreted peptides led to the identification of a unique polypeptide, resistin (RSTN), which has been suggested as a link between obesity and diabetes. RSTN plays a clearly documented role in blocking insulin (INS)-induced hypoglycaemia. As brain injection of INS affects feeding behaviour, we studied the possible interaction between INS and RSTN in food-deprived rats, measuring effects on food intake. In addition, we examined how RSTN might affect neuropeptide Y (NPY)-induced feeding, as studies have shown that rat RSTN can interfere with the NPY system. Methods: Overnight food-deprived rats were injected into the third brain ventricle (3V) with either INS (10 or 20 mUI), RSTN (0.1–0.4 nmol/rat), or saline before access to food. Another group of rats was injected into the 3V with RSTN alone, NPY alone or RSTN plus NPY. Their food intake and body weight were measured. Results: Our results confirm the hypophagic effect of RSTN on food deprivation-induced food intake, and more importantly, show that RSTN neither potentiates nor blocks the effects of INS on food intake, but does reduce the hyperphagic effect of NPY. Conclusion:  The observation that RSTN does not modify feeding INS-induced hypophagia, but does influence NPY-induced feeding, points to the possibility that RSTN may be involved in control of food intake through an NPY-ergic mechanism as INS
    • …
    corecore