20 research outputs found

    The SuperCam Instrument Suite on the Mars 2020 Rover: Science Objectives and Mast-Unit Description

    Get PDF
    On the NASA 2020 rover mission to Jezero crater, the remote determination of the texture, mineralogy and chemistry of rocks is essential to quickly and thoroughly characterize an area and to optimize the selection of samples for return to Earth. As part of the Perseverance payload, SuperCam is a suite of five techniques that provide critical and complementary observations via Laser-Induced Breakdown Spectroscopy (LIBS), Time-Resolved Raman and Luminescence (TRR/L), visible and near-infrared spectroscopy (VISIR), high-resolution color imaging (RMI), and acoustic recording (MIC). SuperCam operates at remote distances, primarily 2-7 m, while providing data at sub-mm to mm scales. We report on SuperCam's science objectives in the context of the Mars 2020 mission goals and ways the different techniques can address these questions. The instrument is made up of three separate subsystems: the Mast Unit is designed and built in France; the Body Unit is provided by the United States; the calibration target holder is contributed by Spain, and the targets themselves by the entire science team. This publication focuses on the design, development, and tests of the Mast Unit; companion papers describe the other units. The goal of this work is to provide an understanding of the technical choices made, the constraints that were imposed, and ultimately the validated performance of the flight model as it leaves Earth, and it will serve as the foundation for Mars operations and future processing of the data.In France was provided by the Centre National d'Etudes Spatiales (CNES). Human resources were provided in part by the Centre National de la Recherche Scientifique (CNRS) and universities. Funding was provided in the US by NASA's Mars Exploration Program. Some funding of data analyses at Los Alamos National Laboratory (LANL) was provided by laboratory-directed research and development funds

    Methodes automatiques de recalage d'images non similaires

    No full text
    La comparaison automatique d'images Ă  l'aide d'un ordinateur, nĂ©cessite une Ă©tape de recalage qui peut ĂȘtre menĂ©e Ă  bien en optimisant un critĂšre de similitude entre images par rapport aux paramĂštres de recalage. Cet article traite du recalage automatique d'images non similaires. D'abord une nouvelle classe de critĂšres de similitude entre images est prĂ©sentĂ©e; un cas stochastique, un cas dĂ©terministe et un cas mixte sont distinguĂ©s mais dans tous les cas ces critĂšres reposent sur le calcul d'un nombre de changements de signe dans une image de soustraction balayĂ©e ligne par ligne ou colonne par colonne. L'utilisation de ces critĂšres pour le recalage d'images non similaires conduit Ă  des algorithmes de recalage qui sont dĂ©montrĂ©s ĂȘtre beaucoup plus robustes que les mĂ©thodes classiques les plus utilisĂ©es. Ensuite sont prĂ©sentĂ©es diverses mĂ©thodes d'optimisation pour l'estimation des paramĂštres de recalage. Deux approches sont distinguĂ©es : La premiĂšre repose sur une association de l'Ă©tude systĂ©matique de toutes les valeurs possibles des paramĂštres des transformations gĂ©omĂ©triques Ă  une mĂ©thode d'optimisation monodimensionnelle destinĂ©e, elle, Ă  l'estimation d'un paramĂštre d'une transformation de l'Ă©chelle de gris. La seconde est l'application d'une mĂ©thode d'optimisation globale par recherche alĂ©atoire Ă  la dĂ©termination simultanĂ©e de tous les paramĂštres de recalage. Cette mĂ©thodologie est appliquĂ©e Ă  certaines techniques d'imagerie mĂ©dicale: images scintigraphiques en rayons Gamma et images d'angiographie numĂ©risĂ©e en rayons X

    BeitrÀge zur Mikrobestimmung von Kohlenstoff-14 und Tritium

    No full text

    The SuperCam Instrument Suite on the Mars 2020 Rover: Science Objectives and Mast-Unit Description

    No full text
    On the NASA 2020 rover mission to Jezero crater, the remote determination ofthe texture, mineralogy and chemistry of rocks is essential to quickly and thoroughly characterize an area and to optimize the selection of samples for return to Earth. As part of the Perseverance payload, SuperCam is a suite of five techniques that provide critical and complementary observations via Laser-Induced Breakdown Spectroscopy (LIBS), Time-ResolvedRaman and Luminescence (TRR/L), visible and near-infrared spectroscopy (VISIR), highresolution color imaging (RMI), and acoustic recording (MIC). SuperCam operates at remote distances, primarily 2–7 m, while providing data at sub-mm to mm scales. We reporton SuperCam’s science objectives in the context of the Mars 2020 mission goals and waysthe different techniques can address these questions. The instrument is made up of three separate subsystems: the Mast Unit is designed and built in France; the Body Unit is providedby the United States; the calibration target holder is contributed by Spain, and the targetsthemselves by the entire science team. This publication focuses on the design, development,and tests of the Mast Unit; companion papers describe the other units. The goal of this workis to provide an understanding of the technical choices made, the constraints that were imposed, and ultimately the validated performance of the flight model as it leaves Earth, and itwill serve as the foundation for Mars operations and future processing of the dat
    corecore