227 research outputs found
Mechanization: Planning and Selection of Equipment
The planning and selection of equipment for harvest and handling of forage crops can greatly impact the performance and profitability of a farm. The type and size of equipment used affects the harvested yield and nutritive value of the forage crop as well as production costs. Through interactions with other parts of the farm, these effects can impact market value of the forage, animal intake and performance, delays in other farm operations, other production costs, and ultimately farm profit. Standard procedures and relationships have been developed for determining the most appropriate equipment for a given production system. Because of the large number and complexity of the computations involved, software tools have been created to simplify the process and to develop more comprehensive evaluations that include interactions with forage yield and nutritive value and other parts of the farm. Proper planning and selection of equipment can help assure a profitable operation that meets current and future goals of the farm
Evaluating the Economic and Environmental Sustainability of Integrated Farming Systems
Economic and environmental sustainability has become a major concern for forage-based animal production in Europe, North America and other parts of the world. Development of more sustainable farming systems requires an assimilation of experimental and modelling research. Field research is critical for supporting the development and evaluation of models, and modelling is needed to integrate farm components for predicting the long-term effects and interactions resulting from farm management changes. Experimentally supported simulation provides a tool for evaluating and comparing farming strategies and predicting their effect on the watershed, region and beyond
Performance, Carcass Characteristics, and Life Cycle Assessment of Cattle Grown Utilizing Different Combinations of Growth Promoting Technologies
The objective of this study was to determine the impact of different combinations of growth promoting technologies on live animal performance, carcass characteristics, and environmental outcomes
Does collaborative farm-scale modelling address current challenges and future opportunities?
Resources required increasing, resources available decreasingFarm-scale modellers will need to make strategic decisionsSingle-owner modelsMay continue with additional resourcesRisk of ‘succession’ problemCommunity modelling is an alternativeNeed to continue building a community of farm modellersThe results will be published as a peer-reviewed article
Tradeoffs in the quest for climate smart agricultural intensification in Mato Grosso, Brazil.
Low productivity cattle ranching, with its linkages to rural poverty, deforestation and greenhouse gas (GHG) emissions, remains one of the largest sustainability challenges in Brazil and has impacts worldwide. There is a nearly universal call to intensify extensive beef cattle production systems to spare land for crop production and nature and to meet Brazil?s Intended Nationally Determined Contribution to reducing global climate change. However, different interventions aimed at the intensification of livestock systems in Brazil may involve substantial social and environmental tradeoffs. Here we examine these tradeoffs using a whole-farm model calibrated for the Brazilian agricultural frontier state ofMato Grosso, one of the largest soybean and beef cattle production regions in the world. Specifically, we compare the costs and benefits of a typical extensive, continuously grazed cattle system relative to a specialized soybean production system and two improved cattle management strategies (rotational grazing and integrated soybean-cattle) under different climate scenarios.We found clear tradeoffs in GHG and nitrogen emissions, climate resilience, and water and energy use across these systems. Relative to continuously grazed or rotationally grazed cattle systems, the integreated soybean-cattle system showed higher food production and lower GHG emissions per unit of human digestible protein, as well as increased resilience under climate change (both in terms of productivity and financial returns). All systems suffered productivity and profitability losses under severe climate change, highlighting the need for climate smart agricultural development strategies in the region. By underscoring the economic feasibility of improving the performance of cattle systems, and by quantifying the tradeoffs of each option, our results are useful for directing agricultural and climate policy
Global Research Alliance N2O chamber methodology guidelines : Summary of modeling approaches
Acknowledgements Funding for this publication was provided by the New Zealand Government to support the objectives of the Livestock Research Group of the Global Research Alliance on Agricultural Greenhouse Gases. Individual authors work contribute to the following projects for which support has been received: Climate smart use of Norwegian organic soils (MYR, 2017-2022) project funded by the Research Council of Norway (decision no. 281109); Scottish Government's Strategic Research Programme, SuperG (under EU Horizon 2020 programme); DEVIL (NE/M021327/1), Soils-R-GRREAT (NE/P019455/1) and the EU H2020 project under Grant Agreement 774378—Coordination of International Research Cooperation on Soil Carbon Sequestration in Agriculture (CIRCASA); to project J-001793, Science and Technology Branch, Agriculture and Agri-Food Canada; and New Zealand Ministry of Business, Innovation and Employment (MBIE) core funding. Thanks to Alasdair Noble and the anonymous reviewers for helpful comments on a draft of this paper and to Anne Austin for editing services.Peer reviewedPublisher PD
Mitigation of methane and nitrous oxide emissions from animal operations: II. A review of manure management mitigation options
This review analyzes published data on manure management practices used to mitigate methane (CH4) and nitrous oxide (N2O) emissions from animal operations. Reducing excreted nitrogen (N) and degradable organic carbon (C) by diet manipulation to improve the balance of nutrient inputs with production is an effective practice to reduce CH4 and N2O emissions. Most CH4 is produced during manure storage; therefore, reducing storage time, lowering manure temperature by storing it outside during colder seasons, and capturing and combusting the CH4 produced during storage are effective practices to reduce CH4 emission. Anaerobic digestion with combustion of the gas produced is effective in reducing CH4 emission and organic C content of manure; this increases readily available C and N for microbial processes creating little CH4 and increased N2O emissions following land application. Nitrous oxide emission occurs following land application as a byproduct of nitrification and dentrification processes in the soil, but these processes may also occur in compost, biofilter materials, and permeable storage covers. These microbial processes depend on temperature, moisture content, availability of easily degradable organic C, and oxidation status of the environment, which make N2O emissions and mitigation results highly variable. Managing the fate of ammoniacal N is essential to the success of N2O and CH4 mitigation because ammonia is an important component in the cycling of N through manure, soil, crops, and animal feeds. Manure application techniques such as subsurface injection reduce ammonia and CH4 emissions but can result in increased N2O emissions. Injection works well when combined with anaerobic digestion and solids separation by improving infiltration. Additives such as urease and nitrification inhibitors that inhibit microbial processes have mixed results but are generally effective in controlling N2O emission from intensive grazing systems. Matching plant nutrient requirements with manure fertilization, managing grazing intensity, and using cover crops are effective practices to increase plant N uptake and reduce N2O emissions. Due to system interactions, mitigation practices that reduce emissions in one stage of the manure management process may increase emissions elsewhere, so mitigation practices must be evaluated at the whole farm level
iNOS activity is critical for the clearance of Burkholderia mallei from infected RAW 264.7 murine macrophages
Burkholderia mallei is a facultative intracellular pathogen that can cause fatal disease in animals and humans. To better understand the role of phagocytic cells in the control of infections caused by this organism, studies were initiated to examine the interactions of B. mallei with RAW 264.7 murine macrophages. Utilizing modified kanamycin-protection assays, B. mallei was shown to survive and replicate in RAW 264.7 cells infected at multiplicities of infection (moi) of ≤ 1. In contrast, the organism was efficiently cleared by the macrophages when infected at an moi of 10. Interestingly, studies demonstrated that the monolayers only produced high levels of TNF-α, IL-6, IL-10, GM-CSF, RANTES and IFN-β when infected at an moi of 10. In addition, nitric oxide assays and inducible nitric oxide synthase (iNOS) immunoblot analyses revealed a strong correlation between iNOS activity and clearance of B. mallei from RAW 264.7 cells. Furthermore, treatment of activated macrophages with the iNOS inhibitor, aminoguanidine, inhibited clearance of B. mallei from infected monolayers. Based upon these results, it appears that moi significantly influence the outcome of interactions between B. mallei and murine macrophages and that iNOS activity is critical for the clearance of B. mallei from activated RAW 264.7 cells
Incidence, Risk Factors, and Outcomes of Patients Who Develop Mucosal Barrier Injury-Laboratory Confirmed Bloodstream Infections in the First 100 Days after Allogeneic Hematopoietic Stem Cell Transplant
Importance: Patients undergoing hematopoietic stem cell transplant (HSCT) are at risk for bloodstream infection (BSI) secondary to translocation of bacteria through the injured mucosa, termed mucosal barrier injury-laboratory confirmed bloodstream infection (MBI-LCBI), in addition to BSI secondary to indwelling catheters and infection at other sites (BSI-other). Objective: To determine the incidence, timing, risk factors, and outcomes of patients who develop MBI-LCBI in the first 100 days after HSCT. Design, Setting, and Participants: A case-cohort retrospective analysis was performed using data from the Center for International Blood and Marrow Transplant Research database on 16875 consecutive pediatric and adult patients receiving a first allogeneic HSCT from January 1, 2009, to December 31, 2016. Patients were classified into 4 categories: MBI-LCBI (1481 [8.8%]), MBI-LCBI and BSI-other (698 [4.1%]), BSI-other only (2928 [17.4%]), and controls with no BSI (11768 [69.7%]). Statistical analysis was performed from April 5 to July 17, 2018. Main Outcomes and Measures: Demographic characteristics and outcomes, including overall survival, chronic graft-vs-host disease, and transplant-related mortality (only for patients with malignant disease), were compared among groups. Results: Of the 16875 patients in the study (9737 [57.7%] male; median [range] age, 47 [0.04-82] years) 13686 (81.1%) underwent HSCT for a malignant neoplasm, and 3189 (18.9%) underwent HSCT for a nonmalignant condition. The cumulative incidence of MBI-LCBI was 13% (99% CI, 12%-13%) by day 100, and the cumulative incidence of BSI-other was 21% (99% CI, 21%-22%) by day 100. Median (range) time from transplant to first MBI-LCBI was 8 (<1 to 98) days vs 29 (<1 to 100) days for BSI-other. Multivariable analysis revealed an increased risk of MBI-LCBI with poor Karnofsky/Lansky performance status (hazard ratio [HR], 1.21 [99% CI, 1.04-1.41]), cord blood grafts (HR, 2.89 [99% CI, 1.97-4.24]), myeloablative conditioning (HR, 1.46 [99% CI, 1.19-1.78]), and posttransplant cyclophosphamide graft-vs-host disease prophylaxis (HR, 1.85 [99% CI, 1.38-2.48]). One-year mortality was significantly higher for patients with MBI-LCBI (HR, 1.81 [99% CI, 1.56-2.12]), BSI-other (HR, 1.81 [99% CI, 1.60-2.06]), and MBI-LCBI plus BSI-other (HR, 2.65 [99% CI, 2.17-3.24]) compared with controls. Infection was more commonly reported as a cause of death for patients with MBI-LCBI (139 of 740 [18.8%]), BSI (251 of 1537 [16.3%]), and MBI-LCBI plus BSI (94 of 435 [21.6%]) than for controls (566 of 4740 [11.9%]). Conclusions and Relevance: In this cohort study, MBI-LCBI, in addition to any BSIs, were associated with significant morbidity and mortality after HSCT. Further investigation into risk reduction should be a clinical and scientific priority in this patient population
- …